Ábaco Oriental/Métodos Tradicionales/Tablas de División Específicas
Fundamento
editarSupongamos que tenemos que realizar una gran cantidad de divisiones entre 36525, que podría ser el caso si hacemos cálculos de calendarios. Entonces, podríamos simplificar la tarea creando una tabla de división específica para este divisor siguiendo lo que se indica en el capítulo: Guía a la División Tradicional. Comenzaremos calculando las siguientes tres divisiones euclidianas:
100000÷36525 | 200000÷36525 | 300000÷36525 | |||
---|---|---|---|---|---|
Cociente | Resto | Cociente | Resto | Cociente | Resto |
2 | 26950 | 5 | 17375 | 8 | 07800 |
Que se pueden resumir en la siguiente tabla de división especializada:
36525 |
---|
1/36525>2+26950 |
2/36525>5+17375 |
3/36525>8+07800 |
tabla que también podemos obtener con sólo la primera división, ya que tenemos: por lo que sumando este resultado a sí mismo: pero el resto es mayor que el divisor, por lo que procede revisar el cociente al alza con lo que hemos obtenido la segunda regla: 2/36525>5+17375. Si ahora sumamos de nuevo el resultado de la primera división tendremos: donde, nuevamente, el resto supera al divisor y necesitamos revisar al alza con lo que ya disponemos de la tercera regla.
Ahora podemos usar esta tabla para hacer divisiones con este divisor sin usar la tabla de multiplicar. Por ejemplo: ¿Cuántos siglos julianos de 36 525 días caben en 1 000 000 de días? Procedemos de forma idéntica a la división tradicional por divisores de un solo dígito:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
36525 1000000 | Regla: 1/36525>2+26950 sobre la columna G |
36525 2000000 | cambiar 1 en G a 2 |
+26950 | sumar 26950 a H-L |
36525 2269500 | Regla: 2/36525>5+17375 sobre la columna H |
36525 2569500 | cambiar 2 en H a 5 |
+17375 | sumar 17375 a I-M |
36525 2586875 | revisar al alza |
+1 | |
-36525 | |
36525 2650350 | revisar al alza |
+1 | |
-36525 | |
36525 2713825 | ¡Hecho! 1000000÷36525=27, resto 13825 |
¡Y hemos hecho una división por un divisor de cinco dígitos sin usar la tabla de multiplicar!
Tablas de división de dos dígitos
editarEn el pasado se publicaron tablas de división específicas para todos los divisores entre 11 y 99[1].
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|
1 | 9+01 | 8+04 | 7+09 | 7+02 | 6+10 | 6+04 | 5+15 | 5+10 | 5+05 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | |
1 | 4+16 | 4+12 | 4+08 | 4+04 | 4+00 | 3+22 | 3+19 | 3+16 | 3+13 |
2 | 9+11 | 9+02 | 8+16 | 8+08 | 8+00 | 7+18 | 7+11 | 7+04 | 6+26 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | |
1 | 3+07 | 3+04 | 3+01 | 2+32 | 2+30 | 2+28 | 2+26 | 2+24 | 2+22 |
2 | 6+14 | 6+08 | 6+02 | 5+30 | 5+25 | 5+20 | 5+15 | 5+10 | 5+05 |
3 | 9+21 | 9+12 | 9+03 | 8+28 | 8+20 | 8+12 | 8+04 | 7+34 | 7+27 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | |
1 | 2+18 | 2+16 | 2+14 | 2+12 | 2+10 | 2+08 | 2+06 | 2+04 | 2+02 |
2 | 4+36 | 4+32 | 4+28 | 4+24 | 4+20 | 4+16 | 4+12 | 4+08 | 4+04 |
3 | 7+13 | 7+06 | 6+42 | 6+36 | 6+30 | 6+24 | 6+18 | 6+12 | 6+06 |
4 | 9+31 | 9+22 | 9+13 | 9+04 | 8+40 | 8+32 | 8+24 | 8+16 | 8+08 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | |
1 | 1+49 | 1+48 | 1+47 | 1+46 | 1+45 | 1+44 | 1+43 | 1+42 | 1+41 |
2 | 3+47 | 3+44 | 3+41 | 3+38 | 3+35 | 3+32 | 3+29 | 3+26 | 3+23 |
3 | 5+45 | 5+40 | 5+35 | 5+30 | 5+25 | 5+20 | 5+15 | 5+10 | 5+05 |
4 | 7+43 | 7+36 | 7+29 | 7+22 | 7+15 | 7+08 | 7+01 | 6+52 | 6+46 |
5 | 9+41 | 9+32 | 9+23 | 9+14 | 9+05 | 8+52 | 8+44 | 8+36 | 8+28 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | |
1 | 1+39 | 1+38 | 1+37 | 1+36 | 1+35 | 1+34 | 1+33 | 1+32 | 1+31 |
2 | 3+17 | 3+14 | 3+11 | 3+08 | 3+05 | 3+02 | 2+66 | 2+64 | 2+62 |
3 | 4+56 | 4+52 | 4+48 | 4+44 | 4+40 | 4+36 | 4+32 | 4+28 | 4+24 |
4 | 6+34 | 6+28 | 6+22 | 6+16 | 6+10 | 6+04 | 5+65 | 5+60 | 5+55 |
5 | 8+12 | 8+04 | 7+59 | 7+52 | 7+45 | 7+38 | 7+31 | 7+24 | 7+17 |
6 | 9+51 | 9+42 | 9+33 | 9+24 | 9+15 | 9+06 | 8+64 | 8+56 | 8+48 |
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | |
1 | 1+29 | 1+28 | 1+27 | 1+26 | 1+25 | 1+24 | 1+23 | 1+22 | 1+21 |
2 | 2+58 | 2+56 | 2+54 | 2+52 | 2+50 | 2+48 | 2+46 | 2+44 | 2+42 |
3 | 4+16 | 4+12 | 4+08 | 4+04 | 4+00 | 3+72 | 3+69 | 3+66 | 3+63 |
4 | 5+45 | 5+40 | 5+35 | 5+30 | 5+25 | 5+20 | 5+15 | 5+10 | 5+05 |
5 | 7+03 | 6+68 | 6+62 | 6+56 | 6+50 | 6+44 | 6+38 | 6+32 | 6+26 |
6 | 8+32 | 8+24 | 8+16 | 8+08 | 8+00 | 7+68 | 7+61 | 7+54 | 7+47 |
7 | 9+61 | 9+52 | 9+43 | 9+34 | 9+25 | 9+16 | 9+07 | 8+76 | 8+68 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | |
1 | 1+19 | 1+18 | 1+17 | 1+16 | 1+15 | 1+14 | 1+13 | 1+12 | 1+11 |
2 | 2+38 | 2+36 | 2+34 | 2+32 | 2+30 | 2+28 | 2+26 | 2+24 | 2+22 |
3 | 3+57 | 3+54 | 3+51 | 3+48 | 3+45 | 3+42 | 3+39 | 3+36 | 3+33 |
4 | 4+76 | 4+72 | 4+68 | 4+64 | 4+60 | 4+56 | 4+52 | 4+48 | 4+44 |
5 | 6+14 | 6+08 | 6+02 | 5+80 | 5+75 | 5+70 | 5+65 | 5+60 | 5+55 |
6 | 7+33 | 7+26 | 7+19 | 7+12 | 7+05 | 6+84 | 6+78 | 6+72 | 6+66 |
7 | 8+52 | 8+44 | 8+36 | 8+28 | 8+20 | 8+12 | 8+04 | 7+84 | 7+77 |
8 | 9+71 | 9+62 | 9+53 | 9+44 | 9+35 | 9+26 | 9+17 | 9+08 | 8+88 |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | |
1 | 1+09 | 1+08 | 1+07 | 1+06 | 1+05 | 1+04 | 1+03 | 1+02 | 1+01 |
2 | 2+18 | 2+16 | 2+14 | 2+12 | 2+10 | 2+08 | 2+06 | 2+04 | 2+02 |
3 | 3+27 | 3+24 | 3+21 | 3+18 | 3+15 | 3+12 | 3+09 | 3+06 | 3+03 |
4 | 4+36 | 4+32 | 4+28 | 4+24 | 4+20 | 4+16 | 4+12 | 4+08 | 4+04 |
5 | 5+45 | 5+40 | 5+35 | 5+30 | 5+25 | 5+20 | 5+15 | 5+10 | 5+05 |
6 | 6+54 | 6+48 | 6+42 | 6+36 | 6+30 | 6+24 | 6+18 | 6+12 | 6+06 |
7 | 7+63 | 7+56 | 7+49 | 7+42 | 7+35 | 7+28 | 7+21 | 7+14 | 7+07 |
8 | 8+72 | 8+64 | 8+56 | 8+48 | 8+40 | 8+32 | 8+24 | 8+16 | 8+08 |
9 | 9+81 | 9+72 | 9+63 | 9+54 | 9+45 | 9+36 | 9+27 | 9+18 | 9+09 |
Algunos ejemplos
editarA continuación se ofrecen unos pocos ejemplos de tablas específicas con las que puede practicar el lector antes de obtener sus propias tablas.
99 | |
---|---|
1 | 1+01 |
2 | 2+02 |
3 | 3+03 |
4 | 4+04 |
5 | 5+05 |
6 | 6+06 |
7 | 7+07 |
8 | 8+08 |
9 | 9+09 |
Ejemplo: 9801÷99 = 99
Abacus | Comment |
---|---|
ABCDEFGHI | |
9801 99 | Dividend AD, divisor HI |
9891 99 | A: Rule 9/99>9+09 |
9899 99 | B: Rule 8/99>8+08 |
+1 | revising up |
-99 | |
99 99 | Done! No remainder, quotient: 99 |
Dividir por 𝝅 es común en las aplicaciones, estas son las tablas para tres aproximaciones de este número irracional.
314 | 31416 | 3141593 | |||||
---|---|---|---|---|---|---|---|
1 | 3+058 | 1 | 3+05752 | 1 | 3+0575221 | ||
2 | 6+116 | 2 | 6+11504 | 2 | 6+1150442 | ||
3 | 9+174 | 3 | 9+17256 | 3 | 9+1725663 |
Finalmente, la tabla de división por 666.
666 | |
---|---|
1 | 1+334 |
2 | 3+002 |
3 | 4+336 |
4 | 6+004 |
5 | 7+338 |
6 | 9+006 |
Sin embargo, no es aconsejable dividir por este número; los resultados pueden ser impredecibles…
365 |
---|
1/365>2+270 |
2/365>5+175 |
3/365>8+080 |
Este es un número más saludable.
División "corta" y "larga"
editarEn inglés se suele distinguir entre división corta, cuando el divisor es de una sola cifra, y división larga, cuando se trata de divisores con más de un dígito. En el caso de la división tradicional con el ábaco hemos visto que en el primer caso sólo tenemos que utilizar la tabla de división; mientras que en el segundo tenemos que utilizar también la tabla de multiplicar para realizar las divisiones. Con el uso de tablas de dividir específicas podemos dividir por cualquier divisor sin utilizar la tabla de multiplicar y sin importar el número de cifras del divisor; por lo que estamos en una situación semejante a la división corta en este sentido. Podemos, no obstante, hablar también de división larga en este contexto de las tablas de dividir específicas.
Imaginemos que disponemos de las tabla de división por 365 (dada arriba) porque sea habitual que tengamos que dividir por dicho número; e imaginemos asimismo que nos enfrentemos puntualmente a una división por 36525. Como no esperamos tener que hacer muchas divisiones por este número no estamos dispuestos a calcular una tabla de dividir específica para él. Tenemos dos opciones para resolver este problema:
- Usar 3 como divisor propiamente dicho, (empleando la tabla de dividir por 3) y usar 6525 como multiplicador; tal y como se explicó en la Guía a la División Tradicional.
- Usar 365 como divisor propiamente dicho, (empleando la tabla de dividir por 365) y usar 25 como multiplicador.
Esta última forma es una extensión del concepto de división larga a las tablas de dividir específicas y nos permite ahorrarnos algunas multiplicaciones al ser el multiplicador 25 más corto que 6525. Veamos cómo realizarla:
Ejemplo: 219150÷36525 = 6
219150÷36525 usando tabla de dividir por 360 Abacus Comment ABCDEFGHIJKLM Divisor en A-E, dividendo en H-M 36525 219150 H: Regla: 2/365>5+175 36525 519150 Cambiar 2 en H a 5 +175 sumar 175 a IJK 36525 536650 Restar 5×25 de KLM -10 -25 36525 536525 Revisar al alza H +1 -36525 36525 6 ¡Hecho! Resto nulo. 219150÷36525 = 6
- y hemos ahorrado la mitad de las multiplicaciones.
Reglas diagonales
editarCabe preguntarse si existe un equivalente a las reglas diagonales: 9/9>9+8, 8/8>9+8, 7/7>9+7, etc. para estas tablas de dividir específicas. Las reglas diagonales se usan en la división tradicional multi dígito cuando el dividendo empieza por el mismo dígito que el divisor siendo menor que éste (caso 2); por ejemplo: 47÷49. La extensión del concepto a las tablas específicas es inmediato; por ejemplo, para la tabla de dividir por 365 tendríamos: 365/365>9+365; regla que podemos usar para la división de 365213475 por 36525 en la forma:
Abacus | Comment |
---|---|
ABCDEFGHIJKLM | Multiplicador en AB, dividendo en E-M |
25 365213475 | Regla 365/365>9+365 |
25 365213475 | Cambiar 365 en EFG a 900 |
25 900213475 | |
+365 | sumar 365 a FGH |
25 936713475 | restar 9×25 de HIJ |
-18 | |
-45 | |
25 936488475 | Regla 3/365>8+080 |
25 986488475 | Cambiar 3 en F a 8 |
+080 | sumar 080 a GHI |
25 987288475 | restar 8×25 de IJK |
-16 | |
-40 | |
25 987268475 | Revisar F al alza |
+1 | |
-36525 | |
25 993615975 | Regla 3/365>8+080 |
25 998615975 | Cambiar 3 en G a 8 |
+080 | sumar 080 a HIJ |
25 998695975 | restar 8×25 de JKL |
-16 | |
-40 | |
25 998693975 | Revisar F al alza |
+1 | |
-36525 | |
25 999328725 | Regla 3/365>8+080 |
25 999828725 | Cambiar 3 en H a 8 |
+080 | sumar 080 a IJK |
25 999836725 | restar 8×25 de KLM |
-16 | |
-40 | |
25 999836525 | Revisar G al alza |
+1 | |
-36525 | |
25 9999 | ¡Hecho! Resto nulo. 365213475÷36525=9999 |
Pero dichas reglas diagonales, a decir verdad, ni son estrictamente necesarias ni resultarían de uso frecuente. Por ejemplo, en el caso de la división anterior es suficiente emplear la regla: 3/365>8+080
Abacus | Comment |
---|---|
ABCDEFGHIJKLM | Multiplicador en AB, dividendo en E-M |
25 365213475 | Regla 3/365>8+080 |
25 865213475 | Cambiar 3 en E a 8 |
25 873213475 | |
+080 | sumar 080 a FGH |
25 873213475 | restar 8×25 de HIJ |
-16 | |
-40 | |
25 873013475 | Revisar E al alza |
+1 | |
-36525 | |
25 936488475 | |
etc. | Continuar como arriba |
Sin que signifique un exceso de trabajo por comparación a lo hecho arriba. Por otro lado, cuantas más cifras tenga el divisor propiamente dicho, tanto más infrecuente será que nos enfrentemos a un dividendo que comience justamente por los mismos dígitos (1/365 de los casos en el ejemplo); por lo que podemos prescindir de las reglas diagonales si queremos.
Referencias
editar- ↑ Martzloff, Jean-Claude (2006) (en Francés). A history of chinese mathematics. Springer. p. 221. ISBN 978-3-540-33782-9.
Otras lecturas
editar- Murakami, Masaaki (2020). «Specially Crafted Division Tables» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.