Ábaco Oriental/Técnicas Avanzadas/Texto completo
Operaciones Abreviadas
editarIntroducción
editarEste capítulo es un tanto especial en el sentido de que su contenido no es específico del ábaco, sino que se trata de un recurso para acortar operaciones aritméticas tanto en el cálculo escrito como con ábaco. Lo incluimos en este libro porque, a lo largo del mismo, hacemos un uso esporádico de estas operaciones abreviadas.
Esta cuestión puede encontrarse en algunos libros de aritmética de la era anterior a la informática[1]. La motivación es la siguiente. Supongamos que medimos el lado de un cuadrado y obtenemos y queremos calcular su área
un resultado con 6 dígitos, pero si hemos medido el lado del cuadrado con una cinta métrica que solo aprecia milímetros, lo que podemos decir es que el valor del lado está entre y , es decir:
De modo que será un valor entre y . Esto significa que solo conocemos con certeza los dos primeros dígitos del resultado S (74) y que el tercer dígito probablemente sea un 6; el resto de los dígitos de la multiplicación no tienen sentido (decimos que no son significativos) y no debemos incluirlos en nuestro resultado. Deberíamos escribir:
siendo las cifras significativas de nuestro resultado. Entonces, si sólo tres de las seis cifras del producto son significativas, ¿por qué calcular las seis?
Para eso están las operaciones abreviadas.
Cabe decir que el razonamiento anterior se extiende a la división, raíces etc. En líneas generales, un resultado no tiene más cifras significativas que el menor número de ellas entre los operandos; por ejemplo, si dividimos un número con 8 cifras significativas por otro que sólo tiene 2, el resultado tiene sólo 2 dígitos significativos y sería un trabajo estéril obtener 8 dígitos del cociente.
En este capítulo seguiremos los ejemplos que aparecen en Matemáticas de Antonino Goded Mur[1] (en adelante simplemente Matemáticas ), un pequeño manual que formaba parte de la colección: Compendios CHOP, que tan popular fue durante parte del siglo XX en España. Veremos cómo se pueden hacer estas operaciones abreviadas con el ábaco.
Multiplicación
editarEn Matemáticas se propone el siguiente procedimiento para la multiplicación:
- Multiplicación
- Se escribe el producto del multiplicando por la primera cifra del multiplicador,
se escribe debajo el producto del multiplicando amputado de su última cifra por la segunda del multiplicador,
se escribe debajo el producto del multiplicando amputado de sus dos últimas cifras por la tercera del multiplicador
y así sucesivamente
Proponiendo el ejemplo 6665x1375 y la siguiente forma escrita de realizarlo por comparación a la multiplicación normal:
- Ejemplo
6665 x 1375 ——————— 33325 46655 19995 6665 ——————— 9164375
6665 x 1375 ———— 6665 1999 466 33 ———— 9163
Operación
normalOperación
abreviada
Lo importante a considerar aquí es que, de todos los productos parciales que hemos de sumar para obtener el producto:
✕ | ||||
---|---|---|---|---|
debemos tomar en consideración aquellos que tienen potencias de 10 elevadas, los situados por encima de la diagonal en gris, retener sólo el primer dígito de los de dicha diagonal y olvidarnos de los que están por debajo. De esta forma, ahorraremos cierto trabajo.
En el ábaco, este problema se puede resolver de varias maneras; por ejemplo, adaptando la multiplicación moderna:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
6665 1375 | Planteamiento |
+330 | Sumar 5✕66 a K-M |
-5 | Borrar J |
6665 137 330 | |
+4662 | Sumar 7✕666=4662 a J-M |
-7 | Borrar I |
6665 13 4992 | |
+19995 | Sumar 3✕6665=19995 a I-M |
-3 | Borrar H |
6665 1 24987 | |
+6665 | Sumar 1✕6665=6665 a H-L |
-1 | Borrar G |
6665 91637 | Resultado |
6665 9164 | Resultado redondeado a 4 cifras |
e incluso la multiplicación tradicional, borrando primero el dígito del multiplicando y luego sumando los productos parciales desplazados una columna a la izquierda respecto al caso anterior
Ábaco | Comentario |
---|---|
ABCDEFGHIJKL | |
6665 1375 | Planteamiento |
-5 | Borrar J |
+330 | Sumar 5✕66 a J-L |
6665 137330 | |
-7 | Borrar I |
+4662 | Sumar 7✕666=4662 a I-L |
6665 134992 | |
-3 | Borrar H |
+19995 | Sumar 3✕6665=19995 a H-L |
6665 124987 | |
-1 | Borrar G |
+6665 | Sumar 1✕6665=6665 a G-K |
6665 91637 | Resultado |
6665 9164 | Resultado redondeado a 4 cifras |
En todos los casos, tendremos que ser cuidadosos con la posición de la varilla unidad; no olvidemos que y que el resultado obtenido en el ábaco: es en realidad: .
También podemos hacer lo mismo usando métodos de multiplicación que comienzen trabajando con las cifras de la izquierda del multiplicando (vease el capítulo Métodos Especiales de Multiplicación); por ejemplo, utilizando la "Multiplicación que comienza con los dígitos más altos del multiplicador y el multiplicando" de Kojima, explicada en su segundo libro.[2], donde dice: "Como la operación comienza multiplicando los primeros dígitos del multiplicador y el multiplicando, es conveniente para las aproximaciones"; es decir, justamente se adapta a nuestro problema. También podemos probar la multiplicación multifactorial[3] o similar; por ejemplo:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
6665 1375 | Planteamiento |
. . | Varilla unidad |
-1 | Borrar J |
+6665 | Sumar 1✕6665 a G-J |
6665 6665375 | |
+18 | Sumar 3✕6 a GH |
+18 | Sumar 3✕6 a HI |
+18 | Sumar 3✕6 a IJ |
-3 | Borrar K |
+15 | Sumar 3✕5 a JK |
6665 8664575 | |
666 8664575 | Borrar D |
+42 | Sumar 7✕6 a HI |
+42 | Sumar 7✕6 a IJ |
+42 | Sumar 7✕6 a JK |
-7 | Borrar L |
666 91307 5 | |
66 91307 5 | Borrar C |
+30 | Sumar 5✕6 a IJ |
+30 | Sumar 5✕6 a JK |
-5 | Borrar M |
66 91637 | Resultado |
. . | Varilla unidad |
9164 | Resultado redondeado a 4 cifras |
División
editarEn Matemáticas se propone el siguiente procedimiento para la división:
- División
- El primer dígito del cociente se encuentra como de costumbre,
el resto se divide por el divisor sin su último dígito,
el nuevo resto por el divisor sin sus dos últimos dígitos
y así sucesivamente.
- Ejemplo
4567.8 |95.62 743.00 —————— 73.660 47.77 6.7250 .0326
4567.8 |95.62 743.0 —————— |95.6 73.8 4 ————— |95 7.3 7 ——— |9 .1 7 —— 8
Operación normal Operación abreviada
Como puede verse, la secuencia potencialmente infinita de pasos de división larga, en los que en cada uno se obtiene una nueva cifra del cociente, se reemplaza por una secuencia finita de divisiones por un divisor que se reduce en un dígito de cada vez y en la que obtenemos un solo dígito del cociente. Podemos llevar a cabo esta secuencia de divisiones usando el método de dividir que prefiramos; por ejemplo, usando la división tradicional (TD) y la disposición tradicional de la división (TDA):
Ábaco | Comentario |
---|---|
ABCDEFGHIJ | |
9562 45678 | |
. . | Columna unidad |
-4 | Regla: 4/9>4+4 |
+44 | |
9562 49678 | |
-20 | Restar 4x5 de GH |
-24 | Restar 4x6 de HI |
-8 | Restar 4x2 de IJ |
9562 47430 | |
-7 | Regla: 7/9>7+7 |
+77 | |
9562 47130 | |
-35 | Restar 7x5 de HI |
-42 | Restar 7x6 de IJ |
9562 47738 | |
-7 | Regla: 7/9>7+7 |
+77 | |
9562 47708 | |
-35 | Restar 7x5 de IJ |
9562 47773 | |
-7 | Regla: 7/9>7+7 |
+77 | |
9562 47770 | |
+1 | Revisar al alza |
-7 | |
9562 47783 | |
. . | Columna unidad |
Raíz cuadrada
editar- Matematicas
- Se sigue el método corriente hasta haber rebasado la mitad de las cifras de la raíz, obteniéndose las siguientes dividiendo el resto seguido de los periodos no empleados por el duplo de la raíz hallada, seguida de tantos ceros como periodos se han agregado
- Ejemplo
Raíz cuadrada de 123456789 __________ \/123456789| 11111 |------- -1 | -- | 023 | 21x1 -21 | --- | 0245 | 221x1 -221 | ---- | 02467 | 2221x1 -2221 | ----- | 024689| 22221x1 -22221| ------| 02468|
______ \/12345 |111 |--- -1 | -- | 023 |21x1 -21 | --- | 0245 |221x1 -221 | ---- | 024 | --> 246789|22200 ------ 24789 11 2589 _________ ==> \/123456789 = 11111
Operación normal Operación abreviada
Quizás la forma más sencilla de justificar esta forma de abreviar la raíz cuadrada sea la siguiente:
Si es un valor aproximado de la raíz de , entonces podemos escribir
donde es una pequeña corrección a y el cociente será una cantidad mucho menor que : . Entonces podemos escribir: pero si , entonces y despreciando este término podemos escribir:
o bien
donde es el residuo que nos queda tras calcular ; por lo que tenemos la aproximación utilizada en el método abreviado:
Si consideramos que, por ejemplo, hemos determinado con cinco cifras, entonces y , lo que justifica que al despreciar este último termino podamos calcular con cinco cifras; es decir que el método abreviado nos permita doblar la precisión de la raíz ya obtenida con una simple división.
Lo anterior también puede justificarse de varias otras formas, por ejemplo, utilizando el desarrollo en serie de Taylor o el método de Newton de resolución de ecuaciones; lo cual es quizás interesante de mencionar por lo que comentaremos después sobre las raíces cúbicas.
A continuación ilustramos el proceso utilizando el método del medio resto (半九九法,hankukuhou en japonés) como se explica en el capítulo: Raíz Cuadrada, que requiere cambiar el resto a su mitad y doble de la raíz a simplemente la raíz en el párrafo de Matemáticas anterior. Tenga en cuenta que la segunda fase, la división, se puede hacer en forma de división abreviada ya que solo tiene sentido obtener un número limitado de cifras de su cociente. Como consecuencia, obtener las últimas cifras de la raíz cuesta cada vez menos trabajo y tiempo por lo que podemos llamar a esta división la fase acelerada de la extracción de raíces.
- Ejemplo
Raíz cuadrada de 123456789 usando 半九九法 (hankukuhou) y división moderna Ábaco Comentario ABCDEFGHIJ 123456789 Problema planteado como de costumbre 23456789 Restar el cuadrado de 1 del primer grupo 117283945 Dividir el resto por 2 in situ 1 117283945 Anotar 1 como primer dígito de la raíz en A 11 17283945 Nuevo dígito de la raíz 1 en B (revisión al alza) -1 -5 Restar la mitad del cuadrado de 1 de D 11 12283945 111 2283945 Nuevo dígito de la raíz 1 en C (revising up) -11 -5 Restar la mitad del cuadrado de 1 de F 111 1233945 Ahora comienza la segunda fase o fase acelerada +1 Dividir 123 por 111 -111 1111 123945 +1 Dividir 12 into 11 -11 11111 13945 Listo ¡ahora tenemos 5 dígitos de la raíz!
Raíz cúbica
editar- Matemáticas
- Se sigue el método corriente hasta rebasar la mitad de las cifras de la raíz, obteniéndose las siguientes dividiendo el resto seguido de los periodos no usados por el triplo del cuadrado de la raíz seguido de tantos ceros como periodos se han agregado.
- Ejemplo
3_____________ \/1234567890123|10727 ------
3_____________ \/1234567890123|107 9524 ---- 9524890123 |3434700 -------- 2655490 27 2512001
Operación normal Operación abreviada
Al igual que en el caso de la raíz cuadrada, la aproximación utilizada aquí se puede justificar del siguiente modo:
Si es un valor aproximado de la raíz cúbica de , entonces podemos escribir
donde es una pequeña corrección a y el cociente será una cantidad mucho menor que : . Entonces podemos escribir: pero si , entonces y despreciando estos dos términos podemos escribir:
o bien
donde es el residuo que nos queda tras calcular ; por lo que tenemos la aproximación utilizada en el método abreviado:
que también nos permite doblar la precisión de la raíz cúbica ya obtenida con una división.
Al igual que en el caso de la raíz cuadrada, esta operación abreviada también se puede justificar de varias maneras, incluyendo el método de Newton que, por cierto y con mucho, es la mejor forma de obtener raíces cúbicas con el ábaco.[4]; si bien no es una técnica tradicional, es mucho más eficiente que cualquier método tradicional y, si lo usamos, podemos decir que en cierto sentido estamos usando un método abreviado desde el principio (véase el capítulo: Método de Newton para Raíces Cuadradas, Cúbicas y Quintas. Pero veamos un ejemplo utilizando un método tradicional: la raíz cúbica de 666. Seguimos aquí el método explicado por Cargill G. Knott[5] (capítulo: Raíces Cúbicas).
Obviamente, la raíz cúbica de 666 está entre 8 y 9 por estar en el rango 512-728.
Ábaco | Comentario |
---|---|
ABCDEFG | |
666 | Entrar 666 en BCD |
+ | (Columna unidad) |
-512 | Restar 83=512 de BCD |
154 | |
8154 | Entrar 8 en A. Dividir B-F por 8 (A) |
8192500 | Dividir B-F por 3 |
8641662 | Dividir B por 8 (A) |
8781662 | Restar B2=49 de CD |
8732662 | Multiplicar C-F por 3 en C-G |
87 9800 | Multiplicar C-F por 8 (A) en C-G |
87 7840 | Restar B3=343 de EFG |
87 7497 | Raíz: 8.7, Resto: 7.497 |
Así que hemos obtenido 8.7 como raíz hasta ahora, dejando un resto de 7.497. Para aplicar el atajo necesitamos formar el divisor ; Usaremos el binomio de Newton para formar el cuadrado y lo multiplicaremos por tres sumando el doble del valor obtenido.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
87 7497 | Elevando al cuadrado 8.7 |
+49 | |
-112 | |
+64 | |
87 7497 7569 | Multiplicarlo por 3 |
+14 | |
+10 | |
+12 | |
+18 | |
87 7497 22707 | Dividir 7.497 por 227.07 (¡La división puede ser abreviada!) |
8733----22707 | obteniendo sólo dos cifras del cociente |
Alternativamente, también se puede dividir dos veces por 8.7 y luego por 3 para obtener el mismo resultado. Compare el resultado 8.733 con
Otras abreviaturas útiles
editarLo que sigue es otro tipo de cálculo abreviado o aproximaciones completamente diferentes de lo anterior pero que pueden resultar útiles en la práctica. Todas estas expresiones son consecuencia del teorema de Taylor.
Para
-
- ej:
-
- ej:
-
- ej:
-
- ej:
- …
Referencias
editar- ↑ 1,0 1,1 Goded Mur, Antonino (1945) (en Español). Matemáticas. Zaragoza (Spain): Compendios CHOP. pp. 20-26.
- ↑ Kojima, Takashi (1963). Advanced Abacus: Theory and Practice. Tokyo: Charles E. Tuttle Co., Inc.. ISBN 978-0-8048-0003-7.
- ↑ Tejón, Fernando (2005). «Multifactorial Multiplication». 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el August 1, 2021.
- ↑ Cabrera, Jesús (2021). «Newton's method for abacus; square, cubic and fifth roots». jccAbacus.
- ↑ Knott, Cargill G. (1886). «The Abacus, in its Historic and Scientific Aspects». Transactions of the Asiatic Society of Japan 14: pp. 18-73. https://archive.org/details/in.gov.ignca.26020/page/17/mode/2up.
Números Negativos
editarIntroducción
editarLa totalidad de los problemas aritméticos pueden resolverse usando sólo números positivos, por lo que podríamos decir que, en cierto sentido los números negativos son innecesarios. Tal vez sea esta la razón por la cual, a pesar de ser conocidos desde la antigüedad (aparecen por primera vez en Los nueve capítulos sobre el arte matemático de la Dinastía Zhou hace más de 2000 años, y después en las obras de matemáticos hindúes, persas, árabes e incluso en la de Fibonacci), no hayan sido muy apreciados por los matemáticos occidentales hasta el siglo XIX. Pero es indudable que los números negativos permiten dar una solución más sencilla a algunos problemas y ensanchan enormemente el pensamiento matemático, preparando el camino del resto de generalizaciones que han conformado las Matemáticas Modernas. En el ábaco pasa lo mismo, podemos prescindir totalmente de los números negativos pero nos ayudarán a resolver más fácil y elegantemente algunos problemas y, sobre todo, nos darán una nueva visión, más profunda, de la Aritmética de Cuentas.
Además de las cuestiones tratadas en este capítulo, encontrará otros usos de los números negativos en el ábaco en el capítulo Métodos Especiales de División.
Método de los complementos
editarAritmética con número fijo de dígitos
editarUn ábaco y una computadora se parecen mucho... En el corazón de la computadora, su CPU, la unidad de aritmética y lógica ALU contiene varios registros, memorias ultrarápidas destinadas a almacenar transitoriamente los operandos sobre los que se va a trabajar, que son equivalentes, desde el punto de vista lógico, a ábacos binarios (o de tipo 0+1) como el de la figura. Tales ábacos, con sólo una cuenta por columna, pueden representar sólo un dígito binario, 0 o 1 (bit) en cada una de ellas y el número de columnas o bits de cada registro es limitado, siendo 8, 16, 32 y 64 valores frecuentemente usados en el diseño de procesadores. El tamaño de los registros de una CPU limita el tamaño de los números que puede manejar directamente, lo cual no suele ser un problema si ese tamaño resulta suficiente para las aplicaciones. Nuestro ábaco es semejante a un registro en el sentido de que también está limitado a un número fijo de columnas, aunque cada columna puede contener un dígito decimal en lugar de binario; al igual que los registros de la CPU, sólo podremos trabajar en nuestro ábaco con números de hasta cierto tamaño.
Tiene pues sentido plantearse algunas cuestiones relativas a los cálculos aritméticos con un número limitado de dígitos; por ejemplo, si estamos limitados a cinco dígitos podemos representar hasta el número , pero ¿qué pasaría si sumamos este número a sí mismo?
Se produciría un desbordamiento y el 1 inicial no cabe en nuestro ábaco o registro, sólo los dígitos entre llaves serían almacenados o visibles para nosotros:
Esto es claramente una barbaridad, y un problema para nosotros si tenemos que sumar tales números con una lógica (tamaño de registro o de ábaco) tan limitada; pero a su vez nos abre la posibilidad de codificar números negativos donde en principio sólo podríamos tener números positivos y también la posibilidad de reducir la sustracción a la adición (lo cual a nosotros no nos interesa para nada pues ya sabemos restar con nuestro ábaco, pero ha ahorrado mucha circuitería en muchas CPUs). La clave va a consistir en el concepto de número complementario de cifras.
Definición de complemento de n dígitos
editarDado un número entero , positivo y menor que , definamos su complemento de dígitos como:
por ejemplo, el complemento de cinco dígitos de 147
Complemento del complemento de n dígitos
editarReordenando la expresión:
como
tenemos que
es decir, el complemento del complemento de un número es el número de partida; para el ejemplo:
Obtención
editarFrecuentemente, en lo que sigue, tendremos necesidad de obtener mentalmente el complemento de un número. Hacer la resta mentalmente puede ser complicado por los acarreos (tomar prestado), así que la forma más sencilla de obtener será:
ya que número es con exactamente dígitos; por ejemplo, , y esto nos que permite restarle dígito a dígito sin acarreos
y la resta se puede hacer dígito a dígito sin acarreo
o lo que es igual, sustituyendo cada dígito del número por su complemento a 9 dado en la tabla
0 - 9 | 1 - 8 | 2 - 7 | 3 - 6 | 4 - 5 |
(que nos sería práctico memorizar) con lo que sólo nos falta añadir la unidad para obtener el complemento al número dado de dígitos
Recíprocamente, si tenemos el complemento de un número, podremos conocer éste como el complemento del complemento dado en virtud de lo dicho en el apartado anterior; ejemplo, dado :
Esto es otra operación que tendremos que hacer mentalmente con frecuencia y que resolveremos usando los complementos a nueve.
Ampliación y reducción de un complemento
editarSupongamos conocido y que deseamos obtener con ; por definición:
pero es el número formado por nueves seguido de ceros, por lo que obtendremos simplemente anteponiendo nueves a ; por ejemplo:
De la misma forma, podemos reducir un complemento si podemos suprimir nueves de la izquierda del mismo; por ejemplo, dado , tendremos:
Significado
editarSi sumamos un número a su complemento obtenemos:
por lo que , en esta aritmética de dígitos se comporta como el inverso aditivo de x; es decir, como , siendo, por tanto, una representación operativa de este ya que el inicial de queda fuera del rango de dígitos que vemos y sólo nos serán visibles los ceros que le siguen. En el ejemplo de cinco dígitos:
donde sólo vemos los dígitos entre llavecitas y por lo tanto el resultado es .
Suma de un complemento
editarSea , calculemos la suma ; por definición de será:
pero como sólo nos resultan visibles cifras, perdemos de vista el acarreo y el resultado que obtenemos es:
Ejemplo: con , y
Supongamos ahora que :
no hay desbordamiento por acarreo y lo que obtenemos es el complementario de la diferencia cambiada de signo.
Ejemplo: con y
Es decir, en ambos casos el proceso nos resuelve la diferencia , pero nos presenta el resultado de un modo u otro dependiendo de si este es positivo o negativo (o lo que es lo mismo, si hay acarreo o no). En el caso de una computadora, esto requerirá reservar un bit del registro para dicho acarreo; en nuestro caso, una columna adicional del ábaco o bien, en la mayoría de las ocasiones, llevar la cuenta mentalmente de si hay o no acarreo.
Esta es la forma en la que la sustracción puede reducirse a la adición, tal y como mencionamos más arriba.
Ábacos y números negativos
editarA continuación veremos el modo de aplicar lo anterior sobre el ábaco con el fin de poder incluir números negativos en la aritmética de cuentas.
El otro lado del ábaco
editarEmpecemos por introducir el concepto de las dos caras o lados del ábaco y cómo leerlas.
Complementos y el ábaco moderno
editarIngresemos el número alineado a la derecha en un ábaco moderno (tipo 4+1) de cinco columnas:
A | B | C | D | E | ||
---|---|---|---|---|---|---|
0 | 0 | 1 | 4 | 7 |
Interpretamos que la disposición de cuentas presentadas en la figura corresponde al número en las columnas CDE sin más que sumar, para cada posición decimal (columnas o varillas), el valor atribuido a cada una de las cuentas activadas. Si hacemos lo mismo pero con las cuentas desactivadas, obtendremos , número que se relaciona con el anterior en el sentido de que cada dígito ha sido sustituido por su complemento a 9 (dado que que la suma del valor atribuido a todas las cuentas de una columna es nueve). Por tanto, y de acuerdo a lo tratado arriba, sólo nos faltaría sumar al número así leído para conocer el complemento de 5 cifras del número ( ). A falta de otra denominación, cuando hagamos esto diremos que hemos leído el Otro Lado del ábaco[1] como contrapuesto a la lectura de Este Lado del ábaco.
A | B | C | D | E | ||
---|---|---|---|---|---|---|
0 | 0 | 1 | 4 | 7 | ¡Lectura en Este Lado! | |
9 | 9 | 8 | 5 | 3 | ¡Lectura del Otro Lado! |
También, limitando la lectura, habríamos podido determinar y .
Recíprocamente, si tenemos en nuestro ábaco, la lectura del otro lado nos dará su complemento que, como sabemos, es el número original
A | B | C | D | E | ||
---|---|---|---|---|---|---|
9 | 9 | 8 | 5 | 3 | ¡Lectura en Este Lado! | |
0 | 0 | 1 | 4 | 7 | ¡Lectura del Otro Lado! |
Complementos y el ábaco tradicional
editarDesafortunadamente, si empleamos un ábaco diferente, un 5+1, 5+2 o 5+3, no podremos leer el otro lado contando las cuentas desactivadas; tendríamos que excluir mentalmente las cuentas adicionales, lo cual podría resultarnos confuso y proclive a errores. Con estos ábacos resultará más sencillo sustituir mentalmente cada dígito de este lado por su complemento a 9 y añadir 1 al total.
A | B | C | D | E | ||
---|---|---|---|---|---|---|
0 | 0 | 1 | 4 | 7 | ¡Lectura en Este Lado! | |
9 | 9 | 8 | 5 | 3 | ¡Lectura del Otro Lado! |
Éste es el método universal, aplicable tanto a cualquier tipo de ábaco como al cálculo con papel y lápiz, por lo que merece la pena esforzarse en seguirlo.
A | B | C | D | E | ||
---|---|---|---|---|---|---|
9 | 9 | 8 | 5 | 3 | ¡Lectura en Este Lado! | |
0 | 0 | 1 | 4 | 7 | ¡Lectura del Otro Lado! |
Suma y Resta
editarUn ábaco sólo soporta las operaciones de suma y resta; todo lo demás, multiplicación, división, raíces, etc. debe reducirse a una secuencia estructurada de sumas y restas. Podremos ingresar al otro lado desde cualquier operación aritmética, pero siempre ocurrirá cuando debamos restar de una cantidad reflejada directamente en el ábaco otra de mayor valor dando un resultado negativo; por ejemplo en la operación . Diremos que hemos entrado en el otro lado porque a partir de ese momento, si queremos leer el resultado representado en el ábaco, deberemos leer el complemento de las cuentas activas como se ha explicado arriba; que hemos salido del otro lado o vuelto a este lado cuando los resultados a leer son positivos y podemos hacer la lectura directa de las cuentas activas.
Veamos el ejemplo de la operación mencionada :
Ábaco | Comentario |
---|---|
ABCDEF | |
77 | |
(-94) | No podemos restar! |
+1000 | Tomamos prestado 1000 de la nada... |
1077 | |
-94 | Ahora si podemos restar |
983 | Hemos ingresado al otro lado |
>>-17 | Lectura del otro lado |
Veamos qué hemos hecho aquí. Al no poder restar 94 de 77, hemos tomado prestado de la nada, por decirlo de alguna forma, 1000 que, añadido a 77, nos da 1077, cantidad de la que sí podemos restar 94. Al añadir 1000 y restar 94 a 77, le hemos sumado a 77, por lo que el resultado es el complemento de la diferencia según se ha discutido en el apartado del Método de los complementos; es decir:
que es lo único que da sentido a tomado prestado de la nada; en realidad no estamos tomando nada prestado (sería injustificable desde el punto de vista matemático), lo que hacemos es cambiar de modo de operación formando directamente sobre el ábaco el complemento a la par que lo sumamos a 77. Al cambiar de modo hemos entrado en el otro lado y a partir de ese momento debemos hacer las lecturas del otro lado para conocer los resultados.
- Nota:
- Inicialmente podrá el lector añadir físicamente el 1 a la columna B arriba, pero debería esforzarse un no añadir un 1 que va a ser retirado inmediatamente para ahorrar tiempo, por no mencionar que esa columna podría estar previamente ocupada como ocurrirá en Revisión a la baja desde el otro lado. Introduzca ese uno, y los que necesitará en este tipo de cálculo, sólo en su mente.
Si al resultado anterior sumamos, por ejemplo, 104 tendríamos , un resultado positivo:
Ábaco | Comentario |
---|---|
ABCDEF | |
77 | |
(-94) | No podemos restar! |
+1000 | Tomamos prestado 1000 de la nada... |
1077 | |
-94 | Ahora si podemos restar 94 |
983 | Hemos ingresado al otro lado! |
>>-17 | Lectura del otro lado |
+104 | Sumamos |
1087 | |
-1000 | Devolvemos lo que tomamos prestado de la nada |
87 | Hemos vuelto a este lado! |
Observe el lector como al sumar 104 se produce un acarreo más allá de la frontera de tres dígitos de los complementos que estamos usando aquí (un desbordamiento), lo cual, de acuerdo a lo expresado en Método de los complementos debemos ignorar por no sernos visible, indicándonos que el resultado es positivo y hemos vuelto a este lado del ábaco. Ignorar ese acarreo equivale al devolver lo que hemos tomado prestado indicado en la tabla anterior.
- Nota:
- Por el mismo motivo expresado en la nota anterior, deberíamos evitar llevar el acarreo físicamente a la columna B; ¡hagámoslo sólo en nuestra mente!
Veamos otro ejemplo. Supongamos que nos están dictando números y nos han pedido restar 94 de 77 y que ya lo hemos resuelto como acabamos de ver y en nuestro ábaco figura 983, supongamos que ahora nos piden restar 1727 de dicho resultado...
Ábaco | Comentario |
---|---|
ABCDEF | |
77 | |
(-94) | No podemos restar! |
+1000 | Tomamos prestado 1000 de la nada... |
1077 | |
-94 | Ahora si podemos restar 94 |
983 | Hemos ingresado al otro lado! |
>>-17 | Lectura del otro lado |
983 | |
(-1727) | No podemos restar! |
+9 | Complemento de 4 cifras |
9983 | |
-1727 | Ahora si podemos restar 1727 |
8256 | Seguimos en el otro lado |
>-1744 | Lectura del otro lado |
Al sumar 9 en B, estamos utilizando lo dicho en Ampliación y reducción de un complemento y transformamos un complemento de 3 dígitos en otro de 4, lo que permite continuar la operación y obtener -1744. Seguimos en el otro lado y sólo podríamos salir por un acarreo a la columna B al sumar una cantidad suficientemente grande; por ejemplo 1744 (para comprobar que hemos leído correctamente el otro lado), deberíamos obtener 1{0000}, donde el 1 es el acarreo a B que nos saca del otro lado y las cifras visibles (entre llaves) nos indican que el resultado es 0 en este lado.
Multiplicación
editarNo es de esperar que lo que sigue sea de mucha aplicación, pero sí una forma de ampliar nuestra comprensión de los números complementarios y del ábaco.
Sean y dos enteros positivos. Deseamos formar el producto y para ello contaremos con la representación de en la forma de complemento:
donde es el número de dígitos de , y también contaremos con el complemento de :
donde es el número de dígitos de . Formemos el producto:
Sumemos ahora al primer y último término de la expresión anterior:
con lo que tenemos:
es decir, la cantidad es el complemento de dígitos del producto buscado.
Veamos un ejemplo: con ( ) y con ( ); entonces será: . Tendremos:
y
por lo que
que es el complemento de cuatro cifras de por lo que
Sobre el ábaco:
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
62 12 | b y a |
62 88 | b y 2Cb |
... | Multiplicación moderna |
62 5456 | p |
+3800 | 2Cbx10k |
62 9256 | |
>>-744 | Lectura del otro lado |
Nótese que, a efectos prácticos, sumar equivale a restar de los dígitos de la izquierda de
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
62 12 | b y a |
62 88 | b y 2Cb |
... | Multiplicación moderna |
62 5456 | p |
-62 | Restar b tomando prestado de la nada |
62 9256 | |
>>-744 | Lectura del otro lado |
División
editarSi la división es la operación inversa de la multiplicación, para dividir deberemos invertir los pasos dados en el apartado anterior; así, si hemos terminado antes restando el multiplicador de los dígitos de la izquierda del producto, tomando prestado de la nada, empezaremos ahora sumando el divisor a los dígitos de la izquierda del dividendo acarreando a la nada. Tenemos ; calculemos: :
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
62 744 | a y b |
62 9256 | b y 4C744 |
+62 | Sumar b acarreando a la nada |
62 5456 | |
... | División moderna |
62 88 | Cociente |
>>-12 | Lectura del otro lado |
Probablemente se pregunte por qué hemos formado en el ábaco en lugar de que es más sencillo. Recuerde lo dicho para la multiplicación: el producto nos aparece como un complemento de cifras donde y son los números de dígitos del multiplicando y del multiplicador; por esto no nos sirve aquí y necesitamos ampliar a . Puede emplear este argumento para decidir en cada caso que complemento usar o bien seguir la siguiente:
- Regla práctica:
- Sume mentalmente el divisor a los dígitos de la izquierda del complemento a dividir, si se produce acarreo (a la nada), podemos proceder; en caso contrario añada un 9 a la izquierda del complemento a dividir y proceda.
Por ejemplo[1]: , , y no hay acarreo pero sí da lugar a acarreo. Procedemos entonces a dividir y, leyendo el otro lado de , tendremos la respuesta .
Referencias
editar- ↑ 1,0 1,1 Murakami, Masaaki (2019). «The Other Side of Soroban» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.
Otras lecturas
editar- Murakami, Masaaki (2019). «The Other Side of Soroban» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.
- Tejón, Fernando; Heffelfinger, Totton (2005). «Complementary Numbers (Simplifying Subtraction & The Negative Answer)» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 21 de Diciembre de 2018.
Métodos Especiales de Multiplicación
editarIntroducción
editarComo se expresó en el capítulo dedicado a la multiplicación tradicional, el número de formas posibles de realizar una multiplicación en el ábaco puede ser muy elevado, aunque sólo una pequeña fracción de ellas puedan ser fácilmente desarrolladas por un operador humano y podamos considerarlas prácticas. No obstante, el número de estas formas prácticas de efectuar la multiplicación sigue siendo importante y de ellas sólo hemos tratado dos en este libro: la multiplicación moderna y la tradicional.
Los métodos de multiplicación usados en el ábaco pueden ser de dos categorías:
- Métodos Genéricos: permiten multiplicar dos números cualesquiera dados. Ejemplos: los dos vistos hasta ahora.
- Métodos Especiales: sólo son aplicables bajo determinadas condiciones; por ejemplo, cuando el multiplicador es próximo a la unidad, o acaba en uno, etc.
En lo que sigue introduciremos algunos de estos métodos adicionales, pero estarémos lejos de agotar el tema. El lector puede acudir a las lecturas adicionales para descubrir nuevas variantes.
Multiplicación multifactorial
editarSe presentan a continuación dos métodos generales (pueden usarse en todos los casos) para multiplicar números procesando las cifras del multiplicando de izquierda a derecha; lo cual es particularmente útil cuando se han de multiplicar varios factores (multifactorial) o cuando se busca un valor aproximado del producto (Véase el capítulo sobre operaciones abreviadas). Ejemplo: 37×47×65
Método 1
editar- Nota:
- Procure siempre dejar suficiente espacio entre multiplicando y multiplicador; especialmente si va a multiplicar varios factores como es aquí el caso.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
47 37 | Multiplicador en A-E, multiplicando en NO |
+12 | Sumar 3×4 en LM |
+21 | Borrar 3 (N), sumar 3×7 en MN |
47 1417 | |
+28 | Sumar 7×4 en MN |
+49 | Borrar 7 (O), sumar 7×7 en NO |
47 1739 | Resultado en LO |
65 1739 | Ahora multiplicamos por 65 en HI |
+06 | Sumar 1×6 en JK |
+05 | Borrar 1 (L), sumar 1×5 en KL |
65 65739 | |
+42 | Sumar 7×6 en KL |
+35 | Borrar 7 (M), sumar 7×5 en LM |
65 110539 | |
+18 | Sumar 3×6 en LM |
+15 | Borrar 3 (M), sumar 3×5 en MN |
65 112459 | |
+54 | Sumar 9×6 en MN |
+45 | Borrar 9 (O), sumar 9×5 en NO |
65 113035 | Resultado en I-O |
Método 2
editarEn lugar de ir borrando las cifras del multiplicando para añadir el ultimo producto parcial que le corresponde, como hemos hecho arriba, podemos disminuir el multiplicador en una unidad y limitarnos a sumar sin borrar nada; por ejemplo: 37×47
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
46 37 | Multiplicador menos 1 en A-E, multiplicando en NO |
+12 | Sumar 3×4 en LM |
+18 | Sumar 3×6 en MN |
46 1417 | |
+28 | Sumar 7×4 en MN |
+42 | Sumar 7×6 en NO |
46 1739 | Resultado en LO |
Multiplicador terminado en 1
editarSi uno de los factores acaba en uno podemos ahorrar algún trabajo empleando el método 1 de multiplicación multifactorial explicado arriba. Por ejemplo, 481×76; procederíamos del siguiente modo omitiendo el 1 final de 481:
Ábaco | Comentario |
---|---|
ABCDEFGHI | |
48 76 | Multiplicador, omitido el 1, en AB; multiplicando en HI |
+28 | Sumar 7×4 en EF |
+56 | Sumar 7×8 en FG |
48 33676 | |
+24 | Sumar 6×4 en FG |
+48 | Sumar 6×8 en GH |
48 36556 | Resultado en E-I |
- Es decir:
-
- No borramos los dígitos del multiplicando
- No olvidamos que el multiplicador tiene un dígito más de los inscritos en el ábaco a la hora de decidir dónde sumar los productos parciales
Multiplicador que comienza con 1
editarDel mismo modo, podemos ahorrar cierto trabajo cuando el multiplicador empieza por 1 si usamos la multiplicación tradicional y no borramos los dígitos del multiplicando. Por ejemplo, 175×73:
Ábaco | Comentario |
---|---|
ABCDEFGHI | |
75 73 | No necesitamos el 1 en A |
+15 | Sumar 3×5 en HI |
+21 | Sumar 3×7 en GH |
75 7525 | |
+35 | Sumar 7×5 en GH |
+49 | Sumar 7×7 en FG |
75 12775 | Resultado en E-I |
a
Multiplicador ligeramente mayor que la unidad
editarAclaremos antes de empezar que por multiplicador ligeramente mayor que la unidad queremos decir que uno de los factores a multiplicar, el que señalamos como multiplicador, es de la forma: , con una cantidad pequeña positiva y cualquier entero. Es decir, que en el ejemplo que sigue, 1.03 podría ser igualmente 103, 10300 o 0.00000103 ya que el término afecta sólo a la posición del punto decimal en el resultado y no a la secuencia de dígitos que se obtiene en la multiplicación.
Dicho lo anterior, consideremos la multiplicación: 7×1.03; podríamos realizarla usando el método moderno en la forma:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
103 7 | Multiplicador en A-C, multiplicando en H |
+07 | Sumar 7×1 en IJ |
+21 | Sumar 7×3 en KL y borrar H |
721 | Resultado en J-L |
Como vemos, realizar esta multiplicación en el ábaco consiste en sumar los dos productos parciales 7×1=7 y 7×3=21 en determinados lugares del ábaco. No sería muy diferente usando la multiplicación tradicional:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
103 7 | Multiplicador en A-C, multiplicando en H |
+21 | Sumar 7×3 en JK y borrar H |
+07 | Sumar 7×1 en HI |
721 | Resultado en I-K |
Reparemos en que en ambos casos tenemos que inscribir un 7 en el ábaco como resultado de sumar el primer producto parcial y que también tenemos que borrar un 7 correspondiente al multiplicando. Claramente ahorraremos cierto tiempo y trabajo si evitamos esto; lo único que tenemos que hacer es considerar que el 7 ya inscrito (multiplicando) se transforma en el 7 (producto parcial) y lo que nos falta por hacer es simplemente añadir el otro producto parcial en el lugar correcto:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
103 7 | Multiplicador en A-C, multiplicando en H |
+21 | Sumar 7×3 en JK y borrar H |
721 | Resultado en H-J |
Nótese que no se opera con el 1 del multiplicador, por lo que es habitual no inscribirlo en el ábaco para sólo tener a la vista los dígitos con los que tenemos que operar; es decir repitiendo el proceso anterior:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
003 7 | Multiplicador en A-C, multiplicando en H |
+21 | Sumar 7×3 en JK |
721 | Resultado en H-J |
Podríamos haber inscrito el 3 en la columna A (como también podríamos prescindir de inscribirlo), pero es recomendable, al menos al principio, ponerlo en la manera indicada en la columna C ya que esa posición nos guiará acerca de en qué columna tenemos que añadir los productos parciales. Esto será mas claro en los casos que veremos a continuación.
El término del multiplicador no tiene que ser de un sólo dígito; por ejemplo 7×1.137 ( ):
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
137 7 | Multiplicador en A-D, multiplicando en H |
+07 | Sumar 7×1 en HI |
+21 | Sumar 7×3 en IJ |
+49 | Sumar 7×7 en JK |
7959 | Resultado en H-K |
- Nota
- Como puede verse, los productos parciales se suman, respecto del multiplicando, una posición a la izquierda comparado con la multiplicación tradicional y dos comparado con la moderna. ¡Téngalo en cuenta a la hora de determinar la varilla o columna unidad!
Extendamos ahora este procedimiento a multiplicando de varios dígitos; por ejemplo:123×1.075=132.225, donde procederemos dígito a dígito del multiplicando y de derecha a izquierda:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
75 123 | Multiplicador en A-D, multiplicando en H |
+21 | Sumar 3x7 en KL |
+15 | Sumar 3x5 en LM |
75 123225 | |
+14 | Sumar 2x7 en JK |
+10 | Sumar 2x5 en KL |
75 124725 | |
+07 | Sumar 1x7 en IJ |
+05 | Sumar 1x5 en JK |
75 132225 | Resultado en H-M |
Pero no nos engañemos, este no es un método general de multiplicación y podemos encontrarnos con dificultades; por ejemplo:394×1.075=423.550, en este caso se puede resolver fácilmente usando un ábaco tradicional 5+2 gracias a sus cuentas adicionales que nos permitirán hacer frente al desbordamiento:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
75 394 | Multiplicador en A-D, multiplicando en H |
+28 | Sumar 4x7 en KL |
+20 | Sumar 4x5 en LM |
75 394300 | |
+63 | Sumar 9x7 en JK |
+45 | Sumar 9x5 en KL |
75 391050 | ¡Desbordamiento! |
+63 | Sumar 3x7 en IJ |
+45 | Sumar 3x5 en JK |
75 313550 | ¡Desbordamiento! |
75 423550 | Resultado normalizado en H-M |
pero este problema sería especialmente difícil en un ábaco moderno 4+1. Más aún, si es grande, digamos de aproximadamente 0.2, las cosas son complicadas con cualquier tipo de ábaco; por lo que este método de multiplicación es limitado. No obstante supone una considerable simplificación en algunos casos y resulta especialmente indicado para tratar operaciones con pequeños porcentajes.
Multiplicador ligeramente menor que la unidad
editarAl igual que en la sección anterior y por idéntico motivo, como multiplicador ligeramente menor que la unidad queremos decir que es de la forma: , con una cantidad pequeña positiva y cualquier entero.
Consideremos ahora la multiplicación: ; podríamos realizarla usando el método moderno o tradicional, pero es más sencillo considerar , de modo que al 7 ya puesto en el ábaco sólo tendremos que restarle el producto en el lugar adecuado:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
3 7 | Multiplicador en A-C, multiplicando en H |
-21 | Restar 3×7 de EF |
3 679 | Resultado en D-F |
- Nota:
- En este tipo de multiplicación no perdamos de vista que la cantidad anotada en el ábaco como multiplicador (el 3 en C en el caso anterior) es una cantidad negativa. Esto es lo que justifica que restemos productos parciales en lugar de sumarlos.
Compárese el trabajo realizado con el necesario para realizar la multiplicación moderna o tradicional de 7×0.97. Otro ejemplo con multiplicando de varias cifras :
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
1 999 | Multiplicador en A-C, multiplicando en H-J |
-09 | Restar 9×1 de LM |
-09 | Restar 9×1 de KL |
-09 | Restar 9×1 de JK |
1 998001 | Resultado en H-M |
Obsérvese cómo hemos trabajado las cifras del multiplicando de derecha a izquierda.
Del mismo modo que la multiplicación del apartado anterior, el término no está limitado a una cifra; por ejemplo: :
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
13 7 | Multiplicador en A-D, multiplicando en H |
-07 | Restar 7×1 de IJ |
-21 | Restar 7×3 de JK |
13 6909 | Resultado en H-K |
En este caso tras restar 7×1 de IJ tenemos que memorizar la cifra 7 para continuar.
En el siguiente ejemplo, tanto multiplicando como multiplicador tienen más de un dígito:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
13 37 | Multiplicador en A-D, multiplicando en H |
-09 | Restar 7×1 de IJ |
-09 | Restar 7×3 de JK |
13 36909 | |
-03 | Restar 3×1 de IJ |
-09 | Restar 3×3 de JK |
13 36519 | Resultado en G-K |
Obsérvese cómo hemos trabajado las cifras del multiplicando de derecha a izquierda y las del multiplicador de izquierda a derecha.
Multiplicación redondeando el multiplicador a potencia de 10
editarEl método anterior puede generalizarse en cierta forma cuando el multiplicador puede redondearse a una potencia de 10. Por ejemplo, que puede escribirse: y podemos hacer las dos multiplicaciones y restarlas en la misma operación:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
28 3 37 | Multiplicador en A-E, multiplicando en HI |
+14 | Sumar 7×2 en JK |
+56 | Sumar 7×8 en KL |
-21 | Restar 7×3 de NO |
28 3 37195979 | |
28 3 3 195979 | Borrar 7 en I |
+06 | Sumar 3×2 en IJ |
+24 | Sumar 3×8 en JK |
-09 | Restar 3×3 de MN |
28 3 31035889 | |
28 3 1035889 | Borrar 3 en H, resultado en I-O |
- Nota:
- 28 en AB es positivo, 3 en E es negativo.
Como puede verse, el proceso indicado es mucho más breve que la multiplicación directa de .
Elevación al cuadrado
editarLa potenciación es un ejercicio reiterado de multiplicación por el mismo factor. Así, por ejemplo, , lo que significa que, desde el punto de vista del cálculo manual, se trata de una operación tediosa incluso con pequeños valores del exponente. En lo que sigue nos limitaremos a la elevación al cuadrado, operación que puede simplificarse algo con ayuda del binomio de Newton[1]:
Probablemente encontrará esto útil si se decide a extraer raíces cúbicas con el método de Newton.
Caso de numero de dos cifras
editarEjemplo:
por lo que tomaremos y ; por lo que , lo cual puede llevarse al ábaco de dos formas distintas: trabajando de derecha a izquierda o de izquierda a derecha
Ábaco | Comentario |
---|---|
ABCDEFGHI | |
48 | |
+64 | Sumar 8^2=64 en HI |
+32 | Sumar 8x4=32 en GH |
+32 | Sumar 8x4=32 en GH una segunda vez |
+16 | Sumar 4^2=16 en FG |
48 2304 | resultado en F-I |
- Nota:
- No es necesario introducir la base 48 en el ábaco.
Ábaco | Comentario |
---|---|
ABCDEFGHI | |
48 | |
+16 | Sumar 4^2=16 en FG |
+32 | Sumar 8x4=32 en GH |
+32 | Sumar 8x4=32 en GH una segunda vez |
+64 | Sumar 8^2=64 en HI |
48 2304 | resultado en F-I |
Caso de numero de tres o más cifras
editarEjemplo:
En este caso, para trabajar de derecha izquierda tomaremos: y ; lo cual exigirá la evaluación de por el procedimiento anterior
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
438 | |
+64 | Sumar 8^2=64 en JK |
+24 | Sumar 3x8=24 en IJ |
+24 | Sumar 3x8=24 en IJ una segunda vez |
+32 | Sumar 4^8=32 en HI |
+32 | Sumar 4^8=32 en HI una segunda vez |
438 6944 | Ahora sumamos a^2=43^2 a partir de I |
+09 | Sumar 3^2=09 en HI |
+12 | Sumar 4x3=12 en GH |
+12 | Sumar 4x3=12 en GH una segunda vez |
+16 | Sumar 4^2=16 en FG |
438 191844 | Resultado en F-K |
y para trabajar de izquierda a derecha: y ; lo cual exigirá la evaluación de por el procedimiento del apartado anterior
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
438 | |
+16 | Sumar 4^2=16 en FG |
+12 | Sumar 4x3=12 en GH |
+12 | Sumar 4x3=12 en GH una segunda vez |
+32 | Sumar 4^8=32 en HI |
+32 | Sumar 4^8=32 en HI una segunda vez |
438 1904 | Ahora sumamos b^2=38^2 a partir de I |
+09 | Sumar 3^2=09 en HI |
+24 | Sumar 3x8=24 en IJ |
+24 | Sumar 3x8=24 en IJ una segunda vez |
+64 | Sumar 8^2=64 en JK |
438 191844 | Resultado en F-K |
De la misma forma podemos trabajar con números con un número mayor de cifras; por ejemplo cinco, lo que exigiría calcular:
- el cuadrado de un número de cuatro cifras,
- lo que exigiría a su vez calcular el cuadrado de un número de tres cifras,
- lo que exigiría a su vez calcular el cuadrado de un número de dos cifras,
- ...
- lo que exigiría a su vez calcular el cuadrado de un número de dos cifras,
- lo que exigiría a su vez calcular el cuadrado de un número de tres cifras,
Estos cuadrados deberá empezar a calcularlos dos columnas a la derecha del cuadrado anterior si trabaja de izquierda a derecha, a la izquierda si trabaja de derecha a izquierda.
Valores aproximados
editarHemos visto en los ejemplos anteriores que podemos elevar un número al cuadrado trabajando en cualquiera de las dos direcciones: de izquierda a derecha y de derecha a izquierda. En principio, ambas formas de trabajo son equivalentes e inicialmente deberíamos practicar las dos aunque al final nos acabemos decantando por la que nos resulte más fácil. Hay sin embargo una situación en la que la simetría de ambos procedimientos se rompe y sólo podremos seguir un camino: cuando deseemos conocer sólo una aproximación al cuadrado y queramos abreviar la operación, tendremos que trabajar de izquierda a derecha.
Un ejemplo de la situación descrita podría ser el siguiente. Deseamos calcular la raíz quinta de 2500 siguiendo el método de Newton. Imaginemos que ya hemos obtenido una aproximación de dos cifras (4.8) a dicha raíz y queremos mejorarla con una nueva iteración siguiendo con y . Pero tiene 7 cifras ( ) y no las necesitamos todas dado que si nuestra raíz actual tiene dos dígitos significativos no podemos esperar mas de cuatro en la nueva aproximación, por lo que conocer 4-5 cifras de es suficiente y deseamos abreviar los cálculos en lo posible. supongamos que ya hemos obtenido como ya hemos hecho arriba, entonces continuaríamos:
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
2304 | |
+04 | Sumar 2^2=04 en FG |
+06 | Sumar 2x3=06 en GH |
+06 | Sumar 2x3=06 en GH una segunda vez |
+08 | Sumar 2x4=08 en IJ |
+08 | Sumar 2x4=08 en IJ una segunda vez |
2304 5216 | Ahora sumamos b^2=304^2 a partir de I |
+09 | Sumar 3^2=09 en HI |
+12 | Sumar 3x4=12 en JK |
+12 | Sumar 3x4=12 en JK una segunda vez |
2304 53084 | y podemos cortar aquí |
Con lo que ya tenemos los primeros dígitos de y podemos ahorrar algún trabajo. Esto sólo podemos lograrlo trabajando de izquierda a derecha.
Referencias
editar- ↑ Hosking, Rosalie Joan (2018). «Elementary Soroban Arithmetic Techniques in Edo Period Japan» (PDF). Mathematical Association of America. Archivado desde el original, el 4 de Marzo de 2021.
Otras lecturas
editar- Kojima, Takashi (1963). Advanced Abacus: Theory and Practice. Tokyo: Charles E. Tuttle Co., Inc.. ISBN 978-0-8048-0003-7.
- Murakami, Masaaki (2019). «Multiplication with Excessive multiplicand» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.
- Murakami, Masaaki (2019). «Six multiplication methods» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.
- Hosking, Rosalie Joan (2018). «Elementary Soroban Arithmetic Techniques in Edo Period Japan» (PDF). Mathematical Association of America. Archivado desde el original, el 4 de Marzo de 2021.
Métodos Especiales de División
editarIntroducción
editarSe presentan a continuación algunos métodos especiales de división que nos permitirán ahorrar cierta cantidad de trabajo en determinadas circunstancias.
También presentamos un método general, el de división con cociente excesivo, válido en todos los casos y que usaremos en conjunción con los métodos elementales de división (moderno o tradicional). En realidad, este método, más que un método de división en sí mismo, puede considerarse como la imagen especular de los métodos habituales en el otro lado del ábaco, donde podremos entrar y salir a voluntad para trabajar con restos negativos si encontramos alguna ventaja en ello. En todo caso, será un buen banco de prueba para nuestra comprensión del proceso de división.
Divisor ligeramente mayor que la unidad
editarAl igual que hicimos en el caso de la multiplicación por un número ligeramente mayor que la unidad, aclaremos antes de empezar que por divisor ligeramente mayor que la unidad queremos decir que éste es de la forma: , con una cantidad pequeña positiva y cualquier entero. Es decir, que en el ejemplo que sigue, 1.03 podría ser igualmente 103, 10300 o 0.00000103 ya que el término afecta sólo a la posición del punto decimal en el resultado de la división y no a la secuencia de dígitos que obtendremos en el proceso.
El punto clave de esta división es que, en la mayoría de los casos, el primer dígito del dividendo se corresponde con el dígito del cociente por ser el divisor próximo a la unidad[1], y que dicho dígito desaparecerá del dividendo cuando restemos el producto de la cifra del cociente por el divisor para establecer el resto. Por lo tanto, ahorraremos trabajo si en lugar de borrar ese dígito del dividendo y escribir el mismo en otra parte como cociente, lo reciclamos y lo consideramos convertido en cociente; por ejemplo: 7416÷103
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
3 7416 | 7 como dígito del cociente |
-21 | Restar 7x3 de HI |
3 7206 | 2 como dígito del cociente |
-06 | Restar 2x3 de IJ |
3 72 | Resto nulo, resultado en GH |
donde hemos abreviado la escritura del divisor omitiendo el 1 por no intervenir en los cálculos. Nótese que, con la posición del cociente relativa a la posición del dividendo, esta división no se ha realizado ni con la disposición moderna de la división (MDA) ni con la tradicional (TDA), sino con una nueva disposición que es la inversa abacística de la multiplicación con multiplicador ligeramente mayor que la unidad:
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
3 72 | |
+06 | Sumar 2x3 en IJ |
3 7206 | |
+21 | Sumar 7x3 en HI |
3 7416 | Resultado en G-J |
Nótese también que la cantidad no tiene por qué limitarse a un dígito:
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
12 3696 | 3 como dígito del cociente |
-3 | Restar 3x1 de H |
-06 | Restar 3x2 de HI |
12 3336 | 3 como dígito del cociente |
-3 | Restar 3x1 de I |
-06 | Restar 3x2 de IJ |
12 33 | Resto nulo, resultado en GH |
Pero sí tiene un límite borroso en cuanto al mayor valor que puede tomar; es difícil seguir este procedimiento abreviado de dividir si .
Por otro lado, no siempre se cumplirá lo dicho arriba de que el primer dígito del dividendo se corresponda con el dígito del cociente como ha ocurrido en los ejemplos anteriores, con frecuencia necesitaremos revisar a la baja dicho cociente. Por ejemplo: 8034÷103, inicialmente supondríamos que la cifra del cociente es 8, pero rápidamente veremos que 8 es excesivo y que la cifra del cociente a emplear es 7. Para tratar con esta situación, supondremos que el 1 que nos sobra del primer dígito del dividendo forma parte de la columna siguiente como desbordamiento y lo trataremos como tal; por ejemplo, con un ábaco tradicional con cuentas adicionales podríamos cambiar el planteamiento inicial:
A | B | C | D | E | F | G | H | I | K | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 0 | 0 | 8 | 0 | 3 | 4 | 0 |
por este otro
A | B | C | D | E | F | G | H | I | K | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 0 | 0 | 7 | T | 3 | 4 | 0 |
y proceder:
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
3 8034 | 8 como dígito del cociente |
-24 | Restar 8x3 de HI ¡Excesivo! |
3 7T34 | Transformamos el dividendo, 7 como dígito del cociente |
-21 | Restar 7x3 de HI |
3 7824 | 8 como dígito del cociente |
-24 | Restar 8x3 de IJ |
3 78 | Resto nulo, resultado en GH |
Otra forma de tratar con el desbordamiento sería:
Ábaco | Comentario |
---|---|
ABCDEFGHIJK | |
3 8034 | 8 como dígito del cociente |
-24 | Restar 8x3 de HI ¡Excesivo! |
3 7794 | no importa, restamos de todos modos (Nota) |
+3 | devolvemos lo restado en exceso |
3 7824 | 8 como dígito del cociente |
-24 | Restar 8x3 de IJ |
3 78 | Resto nulo, resultado en GH |
- Nota:
- Al tomar el 8 inicial como cociente (y considerarlo suprimido del dividendo) hemos restado 8×103 de la cabecera del dividendo, pero esto es excesivo ya que el verdadero cociente es 7 y deberíamos haber restado 7×103; es decir 103 menos, por lo que habrá que devolver esta cantidad. En realidad, el 103 restado en exceso lo hemos restado tomando prestado de la nada (ver capítulo sobre números negativos, el 79 que aparece en las columnas HI representa a -21); por lo que al sumar el 100 de 103, restituimos (a la nada) el uno que hemos tomado prestado y sólo nos falta devolver el 3 (-21+103=82 en HI). Consulte también los apartados: Revisión a la baja desde el otro lado y División con cociente excesivo.
Para terminar este apartado añadimos un ejemplo extremo, en el que , para mostrar la clase de dificultades que surgen si no es pequeño. Es interesante comprenderlo bien porque en ocasiones también pueden surgir estas dificultades con valores más moderados de y conviene saber salir del paso. Para tener más claro qué es lo que se va a hacer, conviene tener presente la división resuelta por el método moderno:
Ábaco | Comentario |
---|---|
ABCDEFGHIJ | |
13 10257 | |
13 710257 | Probar 7 como cociente |
-07 | Restar 7x1 de FG |
-21 | Restar 7x3 de GH |
13 7 1157 | |
13 781157 | Probar 8 como cociente |
-08 | Restar 8x1 de GH |
-24 | Restar 8x3 de HI |
13 78 117 | |
13 789117 | Probar 9 como cociente |
-09 | Restar 9x1 de HI |
-27 | Restar 9x3 de IJ |
13 789 | Resto nulo. Cociente:789 |
A continuación sigue la división hecha por este método especial. Lo que hacemos es, fundamentalmente, lo mismo que con la división moderna pero los cocientes son anotados dos columnas a la derecha, lo que resultará confuso al principio.
Ábaco | Comentario |
---|---|
ABCDEFGHIJ | |
3 10257 | Considerar 1 en F como desbordamiento (nota 1) |
3 00257 | Probamos 9 como cociente |
-27 | Restar 9x3 de GH |
3 7557 | Excesivo, queda 7 en G |
---------- | |
3 00257 | Probamos 8 como cociente |
-24 | Restar 8x3 de GH |
3 7857 | Excesivo, queda 7 en G |
---------- | |
3 00257 | Probamos 7 como cociente |
-21 | Restar 7x3 de GH |
3 8157 | Cabe, columna H desbordada (nota 2), seguimos |
3 7157 | Probamos 9 como cociente |
-27 | Restar 9x3 de HI |
3 7887 | Excesivo, queda 8 en H |
---------- | |
3 7157 | Probamos 8 como cociente |
-24 | Restar 8x3 de HI |
3 7917 | Cabe, columna I desbordada (nota 3), seguimos |
---------- | |
3 7817 | Probamos 9 como cociente |
-27 | Restar 9x3 de IJ |
3 789 | Cabe, resto nulo, hecho. |
- Nota 1:
- Según la técnica que estamos tratando, la primera cifra del dividendo es una pista a la cifra del cociente que tenemos que intentar, pero en este caso no sirve porque 10 entre 13 no cabe y tenemos que pensar en 102/13 que nos lleva a una cifra alta. Por eso conviene pensar que el 1 inicial es el desbordamiento de la columna de la derecha; o lo que es lo mismo, que el primer dígito del dividendo es 10 en G. En un ábaco tradicional sería más sencillo entender el proceso ya que cambiaríamos el dividendo de esto:
- a esto otro:
Ahora, el primer dígito del dividendo (10 en G) debería guiarnos a la cifra de cociente que debemos intentar; pero, no sirviendo 10 por lo que acabamos de decir, ensayamos 9. Pero 9 resulta excesivo ya que al sustraer 9×3 de GH nos quedaría 7 en lugar de 9 en G; por lo que pasamos a intentar 8 como cociente, que tampoco nos sirve por idéntico motivo, y luego 7.
- Nota 2:
- Nos sirve 7 como cociente porque, tras restar 7×3 de GH, nos quedaría 8 en G que puede ser interpretado como 7 (la cifra del cociente) más el desbordamiento de la columna H. En un ábaco tradicional tendríamos:
- Nota 3:
- Aquí ocurre lo mismo que en el caso anterior. Nos sirve 8 como cociente porque, tras restar 8×3 de HI, nos quedaría 9 en H que puede ser interpretado como 8 (la cifra del cociente) más el desbordamiento de la columna I.En un ábaco tradicional tendríamos:
- La clave:
- Al probar un cociente y restar el producto de esa cifra del cociente por pueden ocurrir tres cosas:
- En la columna del cociente aparece una cifra menor que la del cociente que estamos probando. La cifra del cociente es excesiva y tenemos que probar otra más baja.
- En la columna del cociente aparece la cifra que estamos probando. Entonces, todo ha ido bien y podemos continuar la división.
- En la columna del cociente aparece la cifra que estamos probando más 1. Todo ha ido bien, la cifra probada del cociente era correcta, pero la unidad de más indica que la columna de la derecha (resto) está desbordada y deberemos ensayar cifras altas para el siguiente dígito del cociente. En un ábaco tradicional quitaríamos el uno que sobra de la cifra del cociente y sumaríamos 10 a la columna de la derecha (como en los diagramas anteriores); en un ábaco moderno tenemos que hacerlo mentalmente.
Como puede verse, lo que se pierde en este método cuando no es pequeño es la simplicidad de que la primera cifra del resto sea un buen indicador de la cifra del cociente a ensayar.
Divisor ligeramente menor que la unidad
editarAl igual que en la sección anterior y por idéntico motivo, como divisor ligeramente menor que la unidad queremos decir que es de la forma: , con una cantidad pequeña positiva y un entero arbitrario. También, como en el método anterior, al ser el divisor próximo a la unidad se tendrá que en la mayoría de los casos la primera cifra del dividendo coincidirá con la del cociente que deberemos probar; por lo que el principal trabajo a realizar en éste método será la determinación del resto o siguiente dividendo.
Si es el dividendo, el divisor y un cociente, se cumplirá:
donde es el resto asociado al cociente . Introduzcamos ahora
por lo que
Ejemplo , cociente entonces:
y, como puede verse, el efecto de en es el de cancelar el primer dígito del dividendo, por lo que bastará sumar a lo que queda del dividendo para obtener el resto (o nuevo dividendo) y poder continuar con la división si procede.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMN | Como divisor sólo anotamos la parte negativa |
3 403 | 4 como cociente |
+12 | Sumar 4x3 en GH |
3 415 | 1 como cociente |
+03 | Sumar 3x3 en HI |
3 4153 | 5 como cociente |
+15 | Sumar 5x3 en IJ |
3 41545 | 4 como cociente |
+12 | Sumar 4x3 en JK |
3 415462 | 6 como cociente |
+18 | Sumar 6x3 en KL |
3 4154638 | 3 como cociente |
+09 | Sumar 3x3 en LM |
3 41546389 | 8 como cociente |
+24 | Sumar 8x3 en LM |
3 415463814 | Desbordamiento! |
+1 | Revisar L al alza |
-97 | |
3 415463917 | Etc. cociente en F-L, resto en MN |
Este método es llamado también: División por números complementarios[2]. Al igual que el método anterior, este método es difícil de seguir si es grande, el límite (borroso) es . Por supuesto, no está limitado a un dígito.
Ábaco | Comentario |
---|---|
ABCDEFGHI | |
12 1056 | 1 como cociente |
+12 | Sumar 1x12 a GH |
12 1176 | 1 como cociente |
+12 | Sumar 1x12 a HI |
12 1188 | |
+1 | Revisar G al alza |
-88 | |
12 1200 | Resto nulo, resultado en FG |
División redondeando el divisor a múltiplo de 10
editarLa presente técnica, que puede considerarse una extensión de la anterior, se usará en conjunción con la división normal, moderna o tradicional, con divisores ligeramente inferiores a una múltiplo de 10; por ejemplo 4997 que puede ponerse como 5000-3. Al escribirlo e esta forma, con una parte positiva y otra negativa, reducimos el número de cifras diferentes de cero por las que multiplicar y restar; reduciéndose el número de operaciones a efectuar.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Divisor en A-D. A es positivo, D es negativo! |
5 3 164901 | 16÷5 -> 3 |
5 3 3164901 | |
-15 | Restar 3x5 de HI |
+09 | Sumar 3x3 en KL |
5 3 3 14991 | 14÷5 -> 2 |
5 3 3214991 | |
-10 | Restar 2x5 de IJ |
+06 | Sumar 2x3 en LM |
5 3 32 4997 | Revisar al alza H |
+1 | |
-4997 | |
5 3 33 | Resto nulo, resultado en GH |
o bien, con la división tradicional:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Divisor en A-D. A es positivo, D es negativo! |
5 3 164901 | Regla 1/5>2+0 |
5 3 264901 | |
+06 | Sumar 2x3 en KL |
5 3 264961 | Revisar H al alza |
+1 | |
-4997 | |
5 3 314991 | Regla 1/5>2+0 |
5 3 324991 | |
+06 | Sumar 2x3 en LM |
5 3 324997 | Revisar I al alza |
+1 | |
-4997 | |
5 3 33 | Resto nulo, resultado en HI |
En ambos casos, se ha reducido el número de dígitos no nulos del divisor de 4 a dos, por lo que la división nos cuesta sólo la mitad de trabajo. Por supuesto, la parte negativa del divisor no está restringida a un dígito... ¡ni la positiva tampoco!
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNOP | |
49 12 1077736 | Regla: 1/4>2+2 |
49 12 2277736 | |
-18 | Restar 2x9 de KL |
+24 | Sumar 2x12 en NO |
49 12 2 97976 | |
49 12 2297976 | Revisar K al alza dos veces |
+24 | Sumar 2x12 en OP (Nota) |
-98 | Restar 2x49 de LM |
49 12 22 | Resto nulo, resultado en JK |
- Nota:
- Aquí se procesa primero la parte negativa para evitar que el dividendo se haga temporalmente negativo; pero no hay ningún inconveniente en seguir el orden habitual y usar el otro lado del ábaco.
1077736÷48988=1077736÷(49000-12)
División tradicional y números negativosÁbaco Comentario ABCDEFGHIJKLMNOP ... Terminación alternativa 49 12 2297976 Revisar K al alza dos veces -98 Restar 2x49 de LM 49 12 2199976 En el otro lado! >>>-24 Lectura: -24 +24 Sumar 2x12 en OP 49 12 22 De vuelta a este lado. Resto nulo, resultado en JK
Revisión a la baja desde el otro lado
editarRevisar a la baja un cociente provisional cuando estamos trabajando la obtención del nuevo dividendo (resto) es siempre algo un tanto molesto por requerir una atención extra. Tenemos que
- disminuir en una unidad la cifra del cociente,
- devolver al resto lo que hemos restado en exceso por haber adoptado un cociente excesivo y
- continuar normalmente a partir de ahí.
Una secuencia de operaciones que se presta fácilmente a que cometamos algún error. Por ejemplo, en el caso de la división 1479889÷37, que también veremos en el apartado siguiente, suponiendo que por error de apreciación usamos 4 como cifra del cociente a probar en lugar de la correcta (3):
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMN | |
37 1479889 | 14/3->4 |
37 41479889 | |
-12 | Restar 4x3 de FG |
37 4 279889 | |
-28 | ¡Excesivo! |
-1 | Revisar E a la baja |
37 3 279889 | |
+3 | Devolver lo restado de más |
37 3 579889 | |
-21 | Continuar normalmente, restar 3x7 de GH |
37 3 369889 | |
... | Etc. |
Una alternativa conceptualmente más sencilla, aunque quizás algo más larga, es no interrumpir la obtención del resto, forzar la sustracción aunque nos lleve transitoriamente al otro lado o reverso del ábaco (números negativos); esto no será un problema ya que volveremos a este lado o anverso del ábaco (números positivos) inmediatamente. Por ejemplo, en la división anterior:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMN | |
37 1479889 | 14/3->4 |
37 41479889 | |
-12 | Restar 4x3 de FG |
37 4 279889 | |
-28 | ¡Excesivo!, forzamos al otro lado |
37 49999889 | -1 en F-H (!) |
-1 | Revisar E a la baja |
37 39999889 | |
+37 | Sumar el divisor (omitir acarreo) |
37 3 369889 | ¡Hemos salido del otro lado! |
... | Continuar división |
Como puede verse, al permitirnos entrar al otro lado no hemos interrumpido la secuencia normal de operaciones, aunque normalmente moveremos más cuentas por este camino. Según los gustos personales esto podría resultarnos más cómodo. Pruébelo y decida.
División con cociente excesivo
editarFundamento
editarReflexionemos de nuevo sobre la división. Cuando tratamos de resolver una división , buscamos un cociente tal que
- Exp. 1
- .
Para ello, en los métodos elementales del cálculo escrito o todos los que hemos desarrollado hasta ahora para el ábaco, seguimos una técnica iterativa basada en la división con resto que nos permite acceder a un nuevo dígito de en cada paso. La división con resto nos dice que es un cociente de si
- Exp. 2
donde
- Exp. 3
es el resto de la división. Sin duda el lector habrá notado que con estas definiciones cualquier número arbitrario sirve como cociente de ya que siempre podemos calcular el resto usando la expresión 3 de forma que la expresión 2 se satisfaga. Por tanto, un método de división paso a paso basado en la división con resto dependerá de una juiciosa elección de una serie de cocientes tal que los correspondientes restos sean progresivamente más pequeño; que tiendan a cero
- Exp. 4
- ,
con lo que los cocientes tenderán a
- Exp. 5
La forma de actuar en un método paso a paso para ir obteniendo sucesivamente los dígitos de será elegir el de entre unos candidatos adecuados que haga mínimo el resto
sin hacerlo negativo. Los candidatos a serán de la forma un dígito del 1 al 9 multiplicado por una potencia de 10 (lo veremos en el ejemplo que sigue). Tras esto, repetimos el proceso con el nuevo dividendo (el resto) obteniendo y un nuevo resto:
con lo que será:
si repetimos ahora para , obtenemos y
y así hasta que el resto sea nulo y
o decidamos terminar con cierta aproximación
Veamos un ejemplo para aclarar lo anterior, la división : Como valor de elegiremos de entre los valores el que haga mínimo el resto sin entrar en la zona negativa; de acuerdo a la tabla :
q1 | d1 |
---|---|
10000 | 1109889 |
20000 | 739889 |
30000 | 369889 |
40000 | -111 |
50000 | -370111 |
60000 | -740111 |
70000 | -1110111 |
80000 | -1480111 |
90000 | -1850111 |
la elección corresponde a y el nuevo dividendo . A continuación repetiremos el proceso partiendo de para obtener , teniéndose:
Cocientes | Restos | |
---|---|---|
q1: 30000 | q1: 30000 | d1: 369889 |
qd1: 9000 | q2: 39000 | d2: 36889 |
qd2: 900 | q3: 39900 | d3: 3589 |
qd3: 90 | q4: 39990 | d4: 259 |
qd4: 7 | q5: 39997 | d5: 0 |
por lo que el número era divisible por y el cociente exacto es:
Esto es básicamente lo que hacemos con cualquiera de los métodos de división vistos hasta ahora como la división moderna o la tradicional.
Ahora tratamos de lo fundamental en relación al nuevo método de división con cociente excesivo[3] que vamos a introducir. En lo anterior, la restricción de elegir el mínimo resto positivo es artificial e innecesaria. Que el resto sea mínimo sí es esencial para que podamos acercarnos a , pero que sea positivo es consecuencia únicamente de que, normalmente, nos enseñan a dividir antes de hablarnos de números negativos, y de la larga tradición que procede de los tiempos en que los números negativos eran mal comprendidos y poco usados. Si quitamos esta restricción y en su lugar elegimos el mínimo en valor absoluto de los restos, admitiendo que tanto estos como los cocientes puedan ser negativos, podemos llevarnos una agradable sorpresa. En el caso del ejemplo, tomando nos lleva a:
Cocientes | Restos | |
---|---|---|
q1: 40000 | q1: 40000 | d1: -111 |
qd1: -3 | q2: 39997 | d2: 0 |
Podemos llevar esta forma de trabajar al ábaco si nos permitimos entrar y salir del Otro Lado; es decir, usar restos y cocientes negativos. Podemos entrar y salir del otro lado a voluntad, simplemente eligiendo un cociente excesivo (una unidad mayor que el requerido) positivo o negativo.
- Entraremos al otro lado:
- cada vez que al forzar la sustracción necesitemos tomar prestado de la última cifra del cociente
- Saldremos del otro lado:
- cada vez que al forzar la sustracción de cantidades negativas (adición, por ser los cocientes negativos) necesitemos acarrear a la última cifra del cociente
Ejemplos
editarÁbaco | Comentario |
---|---|
ABCDEFGHIJKL | |
37 1479889 | 14/3->4 |
37 41479889 | |
-12 | Restar 4x3 de FG |
37 4 279889 | |
-28 | Restar 4x7 de GH |
37 39999889 | |
>>>-111 | Otro lado, -11/3->(-3) |
-3 | |
37 39996889 | |
+09 | Restar -3x3 de JK (sumar 3x3) |
37 39996979 | |
+21 | Restar -3x7 de KL (sumar 3x7) |
37 39997000 | Este lado, resto nulo, cociente en E-I |
Podemos también usar la división tradicional, pero tengamos en cuenta que una regla de división a/b>c+d, en el otro lado, se transforma en -a/b>(9-c)-d, es decir, sustituimos el primer dígito del dividendo por el complemento a nueve de c y restamos d del siguiente dígito (en el ejemplo de abajo 1/3>3+1 se convierte en -1/3>6-1). Podríamos hablar por tanto de reglas de división negativas.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMN | |
37 1479889 | Regla: 1/3>3+1 |
37 3579889 | |
-12 | Restar 3x3 de FG |
37 3369889 | |
+1 | Forzamos la entrada al otro lado |
-37 | |
37 3999889 | |
>>>-111 | Regla: -1/3>6-1 (otro lado) |
37 3999679 | |
+21 | Sumar 3x7 a KL |
37 3999700 | ¡Hemos salido del otro lado! |
Resto nulo, cociente en F-J |
¿Cuándo usar el método?
editarEl método de división por cociente excesivo no es un método especial en el sentido de que sólo sea aplicable bajo determinadas circunstancias; se trata de un método general, avanzado, aplicable en todos los casos. Que sea práctico o no, eso ya es otra cuestión que quizás tenga algo de personal; lo que está claro es que, con su práctica, se puede alcanzar un grado de comprensión de la operación de división que no sería posible practicando sólo los métodos elementales moderno o tradicional.
De los ejemplos anteriores, se deduce que el método será práctico cuando el dividendo sea sólo ligeramente menor que el divisor, lo que permite augurar algunos nueves seguidos en el cociente y un cálculo más breve. Por ejemplo: 998001÷999, el primer dividendo 998 es casi igual al divisor 999, una buena oportunidad de entrar al otro lado:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
999 998001 | Dividendo casi igual al divisor! |
999 T998001 | Cociente excesivo T (10) |
-9990 | Restar Tx999 de H-K |
999 9999001 | Otro lado! |
>>>-999 | Lectura: -999 |
-1 | -999/999 =-1, revisar al alza I (negativo!) |
999 9989001 | |
+999 | Restar -1x999 (sumar +999) de K-M |
999 999 | Este lado! resto nulo, resultado en G-I |
y ahora con división tradicional: 9998001÷9999
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMN | |
9999 99980001 | Regla: 9/9>9+9 |
9999 9898 1 | |
-8991 | Restar 9x999 de H-K |
9999 99989001 | Forzar entrada al otro lado |
+1 | revisando G al alza |
9999 T9989001 | |
-9999 | restar 9999 de H-K |
9999 99990001 | En el otro lado! |
>>>-9999 | Lectura: -9999 |
-1 | Revisar J al alza (negativo!) |
9999 99980001 | |
+9999 | Restar -1x9999 (sumar +9999) de K-N |
9999 99990000 | De vuelta en este lado! |
9999 9999 | Resto nulo, resultado en G-J |
Pero insistiendo una vez más, se trata de un método general y podemos entrar y salir del otro lado cuando queramos.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMN | |
37 7 | |
37 2 7 | Cociente excesivo 2 |
-74 | Restar 2x37 de GH |
37 1996 | En el otro lado! |
>>>-4 | Lectura: -4; |
-1 | Revisar F al alza (negativo!) |
+37 | |
37 18997 | |
>>>-3 | Lectura: -3; -30/37 -> -8 |
-8 | |
37 18917 | |
+296 | Restar -8x37 de I-K |
37 1891996 | |
>>>-4 | Lectura: -4; (repetición) |
-1 | Revisar I al alza (negativo!) |
+37 | |
37 18918997 | |
-1 | Revisar I al alza otra vez |
+37 | para salir del otro lado |
37 18918 34 | De vuelta en este lado! |
... | Etc. |
Referencias
editar- ↑ Kojima, Takashi (1963). Advanced Abacus: Theory and Practice. Tokyo: Charles E. Tuttle Co., Inc.. ISBN 978-0-8048-0003-7.
- ↑ *Murakami, Masaaki (2019). «帰一法除法 (Division by Complementary Numbers)» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.
- ↑ Murakami, Masaaki (2019). «Division with Excessive Quotient» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.
Otras lecturas
editar- Kojima, Takashi (1963). Advanced Abacus: Theory and Practice. Tokyo: Charles E. Tuttle Co., Inc.. ISBN 978-0-8048-0003-7.
- Murakami, Masaaki (2019). «帰一法除法 (Division by Complementary Numbers)» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.
- Murakami, Masaaki (2019). «Division with Excessive Quotient» (PDF). 算盤 Abacus: Mystery of the Bead. Archivado desde el original, el 1 de Agosto de 2021.
Método de Newton para Raíces Cuadradas, Cúbicas y Quintas
editarIntroducción
editarEl Método de Newton para obtener raíces no es un método tradicional en el contexto del ábaco, pero sí es un método muy antiguo; de hecho, es anterior a Newton en muchos siglos, recibiendo también el nombre de Método de Herón e incluso de Método Babilónico aunque no haya evidencia de su uso por parte de ningún escriba babilónico. Si esta forma de obtener raíces se llama método de Newton, es únicamente porque puede derivarse como un caso particular del método más general de Newton-Raphson para resolver ecuaciones y sistemas de ecuaciones genéricas. En cualquier caso, este método parece ser mucho más antiguo que cualquier ábaco oriental de cuentas fijas.
Se trata de un método iterativo para obtener raíces enésimas en el que, partiendo de una aproximación inicial a la raíz , se construyen aproximaciones sucesivas a la misma de acuerdo a la expresión:
de forma que la secuencia de valores obtenidos: se aproxima continuamente al valor de la raíz ; siendo cada término una mejor aproximación a ésta que el término anterior. Decimos que la secuencia tiende o converge a la raíz o que la raíz es el límite de cuando tiende a infinito:
como será más claro en un ejemplo posterior que además nos mostrará la vertiginosa velocidad a la que la secuencia se acerca a la raíz; tanto que, en el ábaco, nos bastarán dos o tres iteraciones para alcanzar 4-8 dígitos de precisión.
La expresión general anterior para la raíz enésima toma las formas particulares:
Raíz cuadrada: | |
---|---|
Raíz cúbica: | |
Raíz quinta: |
La aparición del término limita en la práctica la utilidad de este método para valores elevados de , ya que requiere de un algoritmo eficiente para su evaluación, lo cual no es trivial ni en el cálculo manual ni con la computadora.
Tras un poco de experimentación, el lector podrá usar cómodamente este método para obtener raíces cuadradas y cúbicas y, con un poco de esfuerzo adicional, raíces quintas. Cabe decir sin embargo, que este método no parece representar ninguna ventaja especial frente al método para raíces cuadradas explicado en la sección anterior (método del semi resto) en cuanto a cantidad de cálculo necesario para obtener las primeras cifras de la raíz. Es para raíces cúbicas donde el método se muestra claramente superior a las técnicas tradicionales por su sencillez, eficiencia y resistencia a errores. Para las raíces quintas, las cosas son un poco más complicadas y tal vez no deberían intentarse hasta que se dominen bien las raíces cúbicas.
Dado lo anterior, nos centraremos aquí principalmente en dichas raíces cúbicas.
Raíces cúbicas
editarAntes de empezar
editar1 | 1 |
2 | 8 |
3 | 27 |
4 | 64 |
5 | 125 |
6 | 216 |
7 | 343 |
8 | 512 |
9 | 729 |
Como cuestión previa, si nos proponemos obtener raíces cúbicas, tengamos en cuenta que cualquier número real se puede escribir en notación de ingeniería como:
Con y un número entero (positivo o negativo); con lo que su raíz cúbica puede escribirse
Lo que significa que podemos restringirnos a considerar sólo el problema para , es decir, obtener raíces cúbicas de números comprendidos entre 0 y 1000, teniéndose que:
Por ejemplo, el radicando que se cita más abajo, puede escribirse: y , con , es decir: .
Una vez que nos centramos en las raíces cúbicas de números entre 0 y 1000, conviene memorizar desde el principio la tabla de cubos de la derecha para elegir el valor inicial a utilizar.
Ejemplo usando la calculadora bc
editarAntes que nada, veamos un ejemplo de una raíz cúbica usando una calculadora para poner de manifiesto la “belleza oculta” de este tipo de método. En particular, aquí hemos se ha usado la utilidad de consola bc, disponible para todos los sistemas operativos, por permitir trabajar con precisión arbitraria; lo que nos permitirá seguir un ejemplo con un número exagerado de decimales. Calculemos:
Como comienzo, evaluamos con 40 decimales:
así como su raíz cúbica:
A continuación, trataremos de aproximarnos a este valor de la raíz usando el método de Newton. De acuerdo con la tabla de cubos dada arriba, elegiremos como valor inicial aproximado de la raíz ya que su cubo es el valor tabulado más próximo al radicando . Con este valor inicial, usando: obtenemos con 30 decimales:
7.0 | |
6.803804526251560026165063526040 | |
6.798038244991678152259576056269 | |
6.798033351108952065196287174827 | |
6.798033351105428972796750538247 | |
6.798033351105428972796748712399 | |
6.798033351105428972796748712399 |
Donde los dígitos que aparecen repetidos en la siguiente iteración se han subrayado para revelar la “belleza oculta” de este método que mencionamos anteriormente: la convergencia es cuadrática, lo que significa que el número de dígitos correctos del resultado básicamente se duplica en cada iteración. Esto marca una gran diferencia con los métodos tradicionales o los métodos aritméticos elementales donde sólo se obtiene una nueva cifra del resultado en cada paso (convergencia lineal).
Ejemplo de cálculo manual
editarLas computadoras no sufren por manejar un número excesivo de decimales, nosotros sí. Por tanto, conviene decidir qué queremos obtener de un cálculo antes de realizarlo a mano, ya sea con papel y lápiz o con el ábaco, y proceder en consecuencia. En el caso de las raíces, esto tiene dos aspectos:
- ¿Cuántas cifras queremos que tenga nuestro resultado?
- ¿Cuántas cifras debemos manipular durante los cálculos intermedios para obtener lo anterior?
La mayoría de los cálculos prácticos utilizan números del mundo real obtenidos por medición, y las medidas son siempre de precisión limitada. Las medidas usuales suelen tener tres dígitos significativos, excepcionalmente cuatro, y sólo mediciones muy cuidadosas, con protocolos muy exigentes que pueden extenderse a lo largo de años, conducen a resultados con más cifras significativas. Esta es la razón por la que las tablas de logaritmos con cuatro decimales, las reglas de cálculo y las operaciones abreviadas fueron tan útiles y populares en el pasado; sólo los problemas de matemática pura, astronomía, geodesia, topografía, navegación, etc. necesitaban más precisión.
Propongámonos, por ejemplo, obtener raíces cúbicas hasta cuatro cifras significativas; lo que no significa que no podamos cambiar de opinión más adelante y continuar los cálculos hasta conseguir mayor precisión. Tomemos esto como una respuesta a la primera de las dos cuestiones anteriores.
En cuanto a la segunda cuestión, no es necesario utilizar más de uno o dos dígitos decimales adicionales en los cálculos intermedios. Así, si queremos un resultado con cuatro cifras significativas, sólo tendremos que utilizar cinco o seis dígitos en los cálculos intermedios. Es interesante recalcar esto porque con los métodos tradicionales uno se acostumbra a problemas como hallar la raíz cúbica de 60698457, un número con 8 dígitos, y se espera que, con los métodos tradicionales, se demuestre que el número dado es un cubo perfecto y que su raíz cúbica es exactamente 393, lo que requerirá usar las 8 cifras del radicando. Pero los cubos perfectos son escasos y casi todas las raíces cúbicas con las que nos podamos enfrentar en la práctica son números irracionales cuya representación consiste en una sucesión infinita de dígitos sin repetición. El método de Newton supone un cambio de paradigma respecto a los métodos tradicionales; en lugar de buscar las cifras exactas o correctas del resultado, nos limitamos a buscar una aproximación útil con un número dado de dígitos; y para esto quiźas no necesitemos trabajar con todas las cifras del radicando. Por ejemplo, para obtener una aproximación de tres dígitos a la raíz cúbica de 60698457 sólo necesitamos trabajar con cuatro cifras como podemos comprobar redondeando el número a cuatro dígitos significativos (60700000) y calculando su raíz cúbica con una calculadora electrónica; el resultado que obtenemos, 393.003330089, es correcto a tres dígitos (en realidad a cinco).
Dicho todo esto, intentemos ahora obtener manualmente la raíz cúbica de con cuatro dígitos de precisión. Podríamos repetir los cálculos realizados anteriormente con la utilidad bc pero con un número menor de lugares decimales (usando como valor aproximado de ) y seguir manualmente el mismo proceso que podríamos programar en una computadora con lo que obtendríamos:
7 | |
6.803805 | |
6.798038 | |
6.798033 | |
6.798033 |
proceso que, en ausencia de otro nombre, llamaremos aquí: Método de Newton Vertical (por la disposición de la tabla anterior). Pero lo que es adecuado para una computadora no necesariamente lo es para nosotros los humanos. Fijémonos en la fila de la tabla anterior; partiendo de una aproximación inicial (7) a la raíz, hemos obtenido una nueva aproximación (6.803805) y si ahora seguimos ciegamente el método de Newton, como lo hace la computadora, en la próxima iteración tendremos que dividir dos veces por 6.803805 o bien obtener su cuadrado y dividir por él. Pero si partimos de una aproximación de un dígito a la raíz (7), sólo podemos esperar que el nuevo valor ( ) tenga una precisión de dos dígitos a lo sumo (por lo dicho sobre convergencia cuadrática) por lo que sería una pérdida de tiempo y esfuerzo emprender divisiones por el valor completo (6, 803805). Lo práctico para nosotros los humanos será redondear el resultado a y usarlo como un nuevo valor inicial y repetir el proceso obteniendo un nuevo valor :
7 | 6.8 | 6.798 | |
6.803810 | 6.798039 | 6.798039 |
Proceso que llamaremos aquí: Método de Newton Horizontal para distinguirlo del anterior. De este modo obtenemos una nueva solución que podría tener alrededor de cuatro cifras significativas. Ahora, redondeando nuevamente a estas cuatro cifras, tendremos una nueva para continuar, y así sucesivamente. Es de esperar que esta forma de proceder nos ahorre mucho trabajo y tiempo.
Vemos que, en este caso, la meta de cuatro dígitos se alcanza después de solo dos rondas o iteraciones y que nos ha bastado usar 5 dígitos del radicando ( ). En el Apéndice veremos cómo desarrollar este proceso en el ábaco.
Es de destacar que si en cualquier momento cambiamos de opinión y queremos 8 dígitos del resultado en lugar de 4, el trabajo hecho hasta ahora no se pierde, todo lo que tenemos que hacer es usar 9 o 10 dígitos en lugar de 5 para el radicando y usar la última raíz obtenida (redondeada) como el nuevo valor inicial .
Por cierto, en cada iteración debemos elegir una de las siguientes alternativas:
- Dividir una vez por el cuadrado de
- Dividir dos veces por
Normalmente, la primera opción resulta rápida para las dos primeras iteraciones, pero a partir de ahí la segunda parece más adecuada. Esto es una cuestión de gusto o preferencia personal.
Ejemplos en el ábaco
editarEl uso del método de Newton es, básicamente, una secuencia de divisiones. El lector ya conoce su ábaco, cómo dividir y cómo organizar las operaciones según sus gustos personales, por eso no parece especialmente importante dar ejemplos concretos de aplicación con el ábaco; cada cual debería organizar los cálculos como más cómodo le resulte, empleando el método de división que prefiera. No hay, por tanto, una forma estándar de organizar estos cálculos en el ábaco; no obstante, en el Apéndice, se incluye un ejemplo usando la división tradicional (TD) y la disposición tradicional de la división (TDA) que permite demostrar que un pequeño ábaco de solo 13 varillas es suficiente para lograr un resultado bastante preciso; tenga o no cuentas adicionales. Esto marca una gran diferencia con los métodos tradicionales.
Lo que quizás es más importante con este método es que el lector se entrene y experimente con papel y una calculadora, o con una hoja de cálculo, para asegurarse de que asimila la esencia del método y lo dicho acerca de número de dígitos a usar, precisión etc. lo cual le facilitará el llevarlo a efecto en el ábaco. Aquí tiene una propuesta del tipo de ejercicio que podría intentar para este fin:
A: | 123.456789 | a: | 123.4 | 123.457 | 123.456789 |
Raíz cúbica: | 4.97933859218174 | x0: | 5 | 4.98 | 4.9793 |
x1: | 4.98 | 4.979 | 4.979338592 | ||
A: | 234.567891 | a: | 234.5 | 234.5 | 234.567891 |
Raíz cúbica: | 6.16722113576207 | x0: | 6 | 6.2 | 6.167 |
x1: | 6.17 | 6.167 | 6.167221144 | ||
A: | 345.678912 | a: | 345.7 | 345.679 | 234.567891 |
Raíz cúbica: | 7.01817665163704 | x0: | 7 | 7.02 | 6.167 |
x1: | 7.02 | 7.018 | 6.167221144 | ||
A: | 456.789123 | a: | 457 | 456.79 | 456.789123 |
Raíz cúbica: | 7.70143967570938 | x0: | 8 | 7.7 | 7.701 |
x1: | 7.71 | 7.701 | 7.701439701 | ||
A: | 567.891234 | a: | 567.9 | 567.89 | 567.891234 |
Raíz cúbica: | 8.28110684986205 | x0: | 9 | 8.3 | 8.281 |
x1: | 8.34 | 8.281 | 8.281106851 | ||
A: | 678.912345 | a: | 678.9 | 678.91 | 678.912345 |
Raíz cúbica: | 8.7889683778839 | x0: | 9 | 8.8 | 8.789 |
x1: | 8.79 | 8.789 | 8.788968378 | ||
A: | 789.123456 | a: | 789.1 | 789.12 | 789.123456 |
Raíz cúbica: | 9.24091518455268 | x0: | 9 | 9.3 | 9.241 |
x1: | 9.25 | 9.241 | 9.240915185 | ||
A: | 891.234567 | a: | 891.2 | 891.23 | 891.234567 |
Raíz cúbica: | 9.6234473398081 | x0: | 10 | 9.6 | 9.623 |
x1: | 9.64 | 9.623 | 9.623447361 | ||
A: | 912.345678 | a: | 912.3 | 912.34 | 912.345678 |
Raíz cúbica: | 9.69884025529398 | x0: | 10 | 9.7 | 9.699 |
x1: | 9.71 | 9.699 | 9.698840258 |
Extensión a otras raíces de orden primo
editarRaíces quintas
editar1 | 1 | 1 |
2 | 16 | 32 |
3 | 81 | 243 |
4 | 256 | 1024 |
5 | 625 | 3125 |
6 | 1296 | 7776 |
7 | 2401 | 16807 |
8 | 4096 | 32768 |
9 | 6561 | 59049 |
Para extender el método a la raíz quinta , comencemos por considerar que cualquier número real puede escribirse como
donde y es un número entero (positivo o negativo); por lo que se puede escribir la raíz quinta:
por lo que que podemos restringirnos a considerar sólo el problema para ', es decir, obtener la raíz cúbica de números comprendidos entre 0 y 100 000 que estará comprendida en el intervalo:
Resultará útil, si no memorizar, tener a mano la tabla de potencias cuartas y quintas de la derecha.
Recordando que para raíces quintas , habrá que decidir en cada iteración una de las siguientes alternativas
- Dividir cuatro veces por la raíz anterior .
- Dividir dos veces por el cuadrado de la raíz anterior .
- Dividir una vez por la cuarta potencia de la raíz anterior .
lo cual significa un grado de complicación y cantidad de trabajo mayor que en el caso de raíces cúbicas.
Veamos el ejemplo de (cuya raíz quinta es ) usando como aproximación. Por la tabla anterior vemos que la raíz quinta de es algo mayor que tres, por lo que elegimos . Usando (de la tabla), llegamos rápidamente a , por lo que una mejor aproximación a la raíz es
x0 | 3 | 3.2 | 3.16 |
---|---|---|---|
x1 | 3.1757 | 3.1592 | 3.1581 |
Si intentamos una ronda más con este nuevo valor inicial, después de un poco de trabajo tendremos 3.1592, que tiene casi cuatro dígitos correctos (es solo 0.001 de la raíz verdadera o un error de 0.03%).
Raíces séptimas
editarEn principio, es posible extender el método a raíces de orden primo superiores (para raíces cuyo orden tiene divisores, siempre será más sencillo realizar una serie de raíces en cadena de órdenes primos más pequeños; por ejemplo, para la raíz duodécima de 2 será preferible evaluar
que tratar de obtener directamente la raíz duodécima). En la práctica, sin embargo, ya hemos visto la complicación que aparece con raíces quintas, complicación que se agravaría para raíces séptimas y que en el caso general procede de la presencia del término en la expresión de que es costoso de evaluar, suponiendo un límite efectivo a la aplicación del método de Newton tanto en cálculo manual (ábaco o escrito) como con las computadoras.
El lector puede convencerse por si mismo de lo anterior intentando alguna raíz séptima por su cuenta, pero si desea obtener raíces de órdenes elevados con su ábaco, lo mejor será que use el cálculo logarítmico. Aunque no expresamente recogido en los manuales sobre el ábaco, el cálculo logarítmico se extendió rápidamente por Oriente, de la mano de misioneros y embajadores científicos Jesuitas, casi inmediatamente tras su invención y se usó en conjunción con el ábaco que resultó ser un auxiliar formidable al simplificar y acelerar las sencillas transformaciones aritméticas requeridas por aquél. Si no le atrae la idea de importar a su ábaco logaritmos procedentes de una fuente externa (tablas o calculadora), puede tratar de obtenerlos directamente sobre el ábaco. En el capítulo Método RADIX para Obtener Logaritmos Decimales se explicará una técnica que, por ejemplo, le permitirá obtener una raíz séptima en pocos minutos.
Conclusiones
editarEl método de Newton sobre el ábaco, en comparación con los métodos tradicionales, tiene una serie de ventajas y desventajas. La siguiente lista probablemente sea incompleta.
Pros
editar- Es más fácil de recordar.
- Es rápido, a menudo tres iteraciones conducen a una raíz de 7-8 dígitos.
- Es compacto, para 7-8 dígitos sólo necesita un ábaco de 15-17 varillas si se usa la división moderna, tal vez 13 varillas sean suficientes usando la división tradicional (TD) en disposición tradicional (TDA). Para el mismo propósito, usando los métodos tradicionales, necesitaría un ábaco con muchas más varillas.
- Pequeños errores se "planchan" con las siguientes iteraciones y desaparecen (equivalen a tomar un valor inicial distinto del óptimo), no se vuelven catastróficos como sería el caso de los métodos tradicionales.
- Como este método es principalmente una secuencia de divisiones, puede utilizar su ábaco favorito, algoritmo de división y arreglo de operaciones para adaptarlo a sus gustos personales.
Contras
editar- No es fácil saber cuántos dígitos del resultado son correctos sin una iteración adicional, pero sus habilidades numéricas le ayudarán y lo harán más interesante.
- No es fácil saber si un número dado es un cuadrado, cubo, etc. perfecto o no.
- El radicando debe introducirse varias veces en el ábaco; por lo que habrá que memorizarlo o tenerlo disponible por escrito, etc.
- Sobre el ábaco, el resultado no sustituye al radicando como en el método tradicional y al igual que que ocurre con el resto de las operaciones aritméticas elementales donde el resultado ocupa el lugar de uno de los operandos.
Apéndice: Ejemplo del método de Newton (raíz cúbica) en un ábaco de 13 varillas
editarRaíz cúbica de usando división tradicional (TD) y la disposición tradicional de la división (TDA) para lograr compacidad. Se puede usar cualquier tipo de ábaco si sabe cómo tratar con el desbordamiento. En principio, nos proponemos obtener cuatro dígitos de la raíz, por lo que nos basaremos en la aproximación al radicando . De acuerdo a la tabla de cubos, podemos tomar como primera versión de la raíz.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
49 31416 | Radicando en F-J, para ser dividido por 7x7=49 |
. . | Varillas unidad |
49 73416 | Regla: 3/4>7+2 |
-1 | Revisión a la baja |
+4 | |
49 67416 | |
-54 | Restar 6x9 de GH |
49 62016 | |
49 65016 | Regla: 2/4>5+0 |
-1 | Revisión a la baja |
+4 | |
49 64416 | |
-36 | Restar 4x9 de HI |
49 64056 | 56 > 49 |
+1 | Revisión al alza de H |
-49 | |
49 64107 | Tres dígitos del cociente son suficientes |
641 | Borrando resto y divisor |
. | Varilla unidad |
+14 | Sumar el doble de la raíz anterior |
2041 | |
3 2041 | Dividir por 3 3 |
3 6241 | Regla: 2/3>6+2 |
3 6661 | Regla: 2/3>6+2 |
3 6801 | Revisar al alza dos veces |
3 6803 | Regla: 1/3>3+... four quotient digits, stop |
. | Varilla unidad |
6803 | Borrar A, Nueva raiz ≈ 6.8 |
36 6803 | elevando al cuadrado 6.8, poner 6x6 en AB |
+96 | Sumar 2x6x8 a BC |
+64 | Sumar 8x8 a CD |
46246803 | |
46246803 68 | Por conveniencia, poner nueva raíz en LM |
4624 68 | Borrar cosas viejas... |
4624 68 | |
4624 31416 68 | poner radicando nuevamente, a dividir ahora por 46.24 |
. . . | Varilla unidad |
4624 73416 68 | Regla: 3/4>7+2 |
-1 | Revisión a la baja |
+4 | |
4624 67416 68 | |
ABCDEFGHIJKLM | |
4624 67416 68 | |
-36 | Restar 6x624 de G-J |
-12 | |
-24 | |
4624 63672 68 | |
4624 67872 68 | Regla: 3/4>7+2 |
-42 | Restar 7x624 de H-K |
-14 | |
-28 | |
4624 67435268 | |
4624 67975268 | Regla: 4/4>9+4 |
-54 | Restar 9x624 de H-K |
-18 | |
-36 | No queda sitio! Seguimos con división aproximada |
4624 67919068 | Siguiente, Regla: 1/4>2+2, pero esto trae consigo... |
4624 67921068 | OverflowFlag ON! Memorícelo o use cuentas adicionales |
o suspendidas! | |
-12 | Restar 2x624 de J-M, OverflowFlag OFF! |
-04 | No queda sitio! Aproximando! |
-08 | No queda sitio! Aproximando! |
4624 67929868 | Revisar al alza dos veces |
+2 | |
-9248 | |
4624 67940568 | Revisión al alza de J |
+1 | |
-4 | |
4624 67941168 | |
67941 68 | Borrar resto y divisor |
. . . | Varilla unidad |
67941136 | Doble la raíz antigua sumándola a si misma |
+136 | Sumar el resultado a E-G y borrar KLM |
203941 | |
3 203941 | Dividir por 3 |
3 679803 | Resultado de la división. |
. . | Varilla unidads. Nueva raiz ≈ 6.798 |
A partir de aquí, si desea continuar para lograr mayor precisión, puede empezar de nuevo utilizando y .
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Para continuar, poner nueva raíz en A-D y el radicando en F-M |
6798 31415927 | 8 dígitos del radicando |
. . | Varilla unidad. Empiece dividiendo el radicando dos veces por |
etc... | 67.98 (en lugar de elevar al cuadrado este número y dividir por él) hay suficiente espacio para llegar a una raíz de 6-7 dígitos usando división abreviada cuando sea necesario. |
- Nota:
- Para elevar un número al cuadrado en el ábaco, puede seguir el procedimiento descrito en el capítulo: Métodos Especiales de Multiplicación.
Método RADIX para Logaritmos y Antilogaritmos Decimales
editarIntroducción
editarLa resolución manual de ciertos problemas requiere el uso de logaritmos; por ejemplo, problemas de raíces o potencias complicadas, o de valor del dinero en el tiempo (TVM), etc. Con el ábaco, al igual que en el cálculo escrito, hay dos posibles enfoques para el uso de logaritmos:
- Importar los logaritmos desde una tabla o calculadora externa.
- Obtener los logaritmos directamente.
La primera opción es la práctica, la que ha sido utilizado durante siglos en el cálculo logarítmico, pero tiene el inconveniente de hacer que el trabajo con el ábaco resulte poco menos que trivial y poco atractivo para el abacista del siglo XXI. Por otro lado, el más purista podría quejarse del uso de recursos externos a su ábaco.
La segunda opción, interesante en sí misma, representa una cantidad extraordinaria de trabajo; razón por la cual muchas personas en el pasado pasaron décadas de su vida construyendo tablas de logaritmos para simplificar el trabajo de otros. Solamente en las raras ocasiones en las que se requería mayor precisión de la que podían proporcionar las tablas de logaritmos disponibles, se procedía a la obtención directa de logaritmos de mayor precisión.
Afortunadamente, existe una tercera vía intermedia entre las dos anteriores: el método Radix[1], que permite obtener logaritmos y antilogaritmos de cualquier número utilizando una tabla de datos externos reducida y con una cantidad razonable de trabajo. Además, este método puede resultar atractivo para el abacista ya que pasará la mayor parte del tiempo practicando dos métodos especiales, a saber: multiplicación y división por números ligeramente mayores que uno, introducidos en los capítulos: Métodos Especiales de Multiplicación y Métodos Especiales de División. Justamente este método Radix era el mejor recurso para los casos indicados de necesitar mayor precisión que la ofrecida por las tablas disponibles.
A continuación, nos centraremos en la obtención de logaritmos y antilogaritmos decimales de 5 dígitos por este método. Se necesitará una pequeña tabla de datos que puede ser copiada o impresa en una tarjeta y guardada junto a su ábaco. No se desanime si la explicación es larga, el método tarda más en explicarse que en llevarse a la práctica; por ejemplo, obtener una raíz séptima sólo toma unos minutos (al menos en los días buenos). Empecemos.
Antes de empezar
editarCualquier número real positivo se puede escribir (notación científica) en la forma: , donde y es un número entero, por lo tanto su logaritmo se puede escribir: . Por ejemplo, para los números y tenemos:
Por lo tanto, al igual que se hacía en las antiguas tablas de logaritmos, nos ocuparemos sólo de los números comprendidos entre y .
El Método Radix
editarFundamento
editarEl método radix se basa en el conocimiento de un conjunto de números especiales o rádices para los que son conocidos sus logaritmos. El origen del término es la palabra latina para raíz: radix (plural: radices), ya que el primer conjunto de números especiales usados por H. Briggs, padre de los logaritmos decimales, fue el de las raíces cuadradas sucesivas del número para las cuales los logaritmos decimales son triviales :
Radix | r | |
---|---|---|
10 | 1 | |
3.16227766 | 0.5 | |
1.77827941 | 0.25 | |
1.333521432 | 0.125 | |
1.154781985 | 0.0625 | |
etc. | ... | ... |
El uso de esta tabla era el siguiente: supongamos que se pueda factorizar nuestro número en la forma
donde son algunos de los rádices de la tabla anterior, entonces:
y como los logaritmos de los rádices figuran en la tabla anterior el problema estaría resuelto. Pero esto no va a ser el caso general, lo que podemos esperar es poder escribir
como
donde es un factor residual, un último factor no incluido en la tabla y para el cual se desconoce su logaritmo. Pero si es un número muy cercano a , entonces habremos aproximado como un producto de nuestros números especiales
y si es lo suficientemente cercano a la unidad, su logaritmo será lo suficientemente cercano a cero para poder ser despreciado con una precisión dada, teniéndose finalmente:
Este tipo de aproximación es posible porque la secuencia de rádices se acercan continuamente a la unidad mientras que sus respectivos logaritmos se acercan a cero. En un ejemplo que seguirá, veremos cómo es posible obtener la factorización de arriba con un sencillo proceso que puede ser seguido con cualquier número; pero antes de seguir, es preciso decir que la tabla Radix anterior, si bien tiene valor histórico ya que permitió a Briggs obtener los primeros logaritmos decimales, no es la más adecuada para el cálculo manual. Se atribuye a William Oughtred, inventor de la regla de cálculo, la introducción de otros rádices más convenientes que, limitados a cinco cifras, son los siguientes:
1 | 1.1 | 1.01 | 1.001 | 1.0001 | 1.00001 |
2 | 1.2 | 1.02 | 1.002 | 1.0002 | 1.00002 |
3 | 1.3 | 1.03 | 1.003 | 1.0003 | 1.00003 |
4 | 1.4 | 1.04 | 1.004 | 1.0004 | 1.00004 |
5 | 1.5 | 1.05 | 1.005 | 1.0005 | 1.00005 |
6 | 1.6 | 1.06 | 1.006 | 1.0006 | 1.00006 |
7 | 1.7 | 1.07 | 1.007 | 1.0007 | 1.00007 |
8 | 1.8 | 1.08 | 1.008 | 1.0008 | 1.00008 |
9 | 1.9 | 1.09 | 1.009 | 1.0009 | 1.00009 |
que requirieron el laborioso cálculo de sus logaritmos decimales (limitados aquí a cinco cifras):
0 | 1 | 2 | 3 | 4 | ||
---|---|---|---|---|---|---|
1 | 0.00000 | 0.04139 | 0.00432 | 0.00043 | 0.00004 | 0.00000 |
2 | 0.30103 | 0.07918 | 0.00860 | 0.00087 | 0.00009 | 0.00001 |
3 | 0.47712 | 0.11394 | 0.01284 | 0.00130 | 0.00013 | 0.00001 |
4 | 0.60206 | 0.14613 | 0.01703 | 0.00173 | 0.00017 | 0.00002 |
5 | 0.69897 | 0.17609 | 0.02119 | 0.00217 | 0.00022 | 0.00002 |
6 | 0.77815 | 0.20412 | 0.02531 | 0.00260 | 0.00026 | 0.00003 |
7 | 0.84510 | 0.23045 | 0.02938 | 0.00303 | 0.00030 | 0.00003 |
8 | 0.90309 | 0.25527 | 0.03342 | 0.00346 | 0.00035 | 0.00003 |
9 | 0.95424 | 0.27875 | 0.03743 | 0.00389 | 0.00039 | 0.00004 |
que, después de multiplicar por 100 000, se pueden expresar en una forma más compacta como:
0 | 1 | 2 | 3 | 4 | ||
---|---|---|---|---|---|---|
1 | 0 | 4139 | 432 | 43 | 4 | 0 |
2 | 30103 | 7918 | 860 | 87 | 9 | 1 |
3 | 47712 | 11394 | 1284 | 130 | 13 | 1 |
4 | 60206 | 14613 | 1703 | 173 | 17 | 2 |
5 | 69897 | 17609 | 2119 | 217 | 22 | 2 |
6 | 77815 | 20412 | 2531 | 260 | 26 | 3 |
7 | 84510 | 23045 | 2938 | 303 | 30 | 3 |
8 | 90309 | 25527 | 3342 | 346 | 35 | 3 |
9 | 95424 | 27875 | 3743 | 389 | 39 | 4 |
tabla que podríamos imprimir o copiar en una tarjeta para usarla junto con nuestro ábaco (La fila superior en las dos últimas tablas expresa el número de ceros tras el punto decimal en los rádices mientras que la primera columna contiene el dígito que las caracteriza). Aquí, de nuevo, la secuencia de rádices o números especiales, leídos por columnas de abajo hacia arriba y de izquierda a derecha, se aproxima continuamente a mientras que la secuencia de sus respectivos logaritmos se acerca a .
Tomemos como ejemplo, este número se puede escribir:
como puede verificarse con cualquier calculadora. El logaritmo decimal del último factor es
de modo que, si cinco cifras son suficiente precisión para nosotros, podremos despreciar dicho factor teniéndose:
Si tomamos de la tabla Radix los logaritmos de cada uno de estos factores y los sumamos:
7 | 84510 |
---|---|
1.06 | 2531 |
1.003 | 130 |
1.0006 | 26 |
1.00003 | 1 |
Suma: | 87198 |
tendremos:
que podemos comparar a y comprobar que hemos conseguido cinco cifras de precisión.
A continuación veremos cómo obtener la factorización de cualquier número.
Método
editarObtención de logaritmos
editarLa factorización anterior del número cuyo logaritmo buscamos se obtiene por división repetida. Por ejemplo, dado , como primer paso lo dividiremos por sí mismo truncado a un dígito, es decir, por
o
Ahora, como segundo paso,se debe dividir el cociente anterior por sí mismo truncado a dos dígitos, pero como este número es 1,0 no hay nada que hacer y pasamos a la tercera etapa dividiendo por el cociente truncado a tres dígitos, es decir, por
es decir:
para el cuarto paso continuamos con la división del cociente anterior por sí mismo, ahora truncado a cuatro dígitos
es decir
en el quinto paso, dividimos por sí mismo truncado a cinco dígitos:
y finalmente, un último y sexto paso
y terminamos aquí. Ahora solo tenemos que recolectar los logaritmos de los factores de la tabla Radix y sumarlos para obtener el logaritmo requerido.
- Nota:
- La larga secuencia de divisiones necesaria para factorizar un número se ve notablemente agilizada y facilitada en el ábaco por el método del divisor ligeramente mayor que la unidad.
Uso de los logaritmos
editarUsualmente, nos interesamos en el logaritmo de un número para hacer algo práctico con él; aquí, para seguir con el ejemplo, vamos a usarlo para encontrar la raíz séptima de .
quedando ahora el problema de encontrar el correspondiente antilogaritmo para conocer la raíz buscada.
Obtención de antilogaritmos
editarContinuando con el ejemplo, necesitamos obtener ahora el antilogaritmo del último número. Para ello, tenemos que descomponer el número como la suma de los logaritmos de algunos de los factores o números especiales de la tabla Radix. Primero vemos que el mayor logaritmo que podemos restar sin obtener un resultado negativo es (que corresponde al factor ), con lo cual obtenemos como diferencia. De esta última cantidad, a su vez, podemos restar (correspondiente al factor ) quedando , y así sucesivamente, como se ilustra en la siguiente tabla:
Log | Restar | Factor |
---|---|---|
0.55314 | 0.47712 | 3 |
0.07602 | 0.04139 | 1.1 |
0.03463 | 0.03342 | 1.08 |
0.00121 | 0.00087 | 1.002 |
0.00034 | 0.00030 | 1.0007 |
0.00004 | 0.00004 | 1.00009 |
Lo que nos permite escribir:
o, lo que es lo mismo,
que, una vez hechas las multiplicaciones, nos conduce al valor:
que podemos comparar con el valor de la raíz séptima , resultando ser correcto en 4 o 5 dígitos.
El método Radix sobre con el ábaco
editarObtención de logaritmos
editarPara realizar el procedimiento anterior sobre el ábaco, cada uno podrá utilizar diferentes métodos de división, disposición de operaciones, tipo de ábaco, etc. dependiendo de sus gustos personales. La forma de organizar las operaciones que se presenta a continuación es muy compacta pero no necesariamente tiene por qué ser la mejor para todos. Como se verá, un ábaco de 15 columnas es suficiente para hacer estos cálculos y quizás también uno de sólo 13. La primera división será normal y puede hacerse por el método moderno o el tradicional, las restantes deberán hacerse utilizando el método del divisor ligeramente mayor que la unidad por su simplicidad y rapidez.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
7447 | Anote 7 en A |
7 1063857143 | División normal por 7, anote 6 en C |
706 1003638814 | División especial por 1.06, anote 3 en D |
7063 1000636903 | División especial por 1.0006, anote 6 en E |
706361000036881 | Siguiente divisor es 1.00003... |
70636 | ... simplemente borre el resto F-0 |
706363 | y anote 3 en F como último dígito |
El proceso es idéntico empezando con la división moderna, sólo que habría empezar una columna más a la derecha.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
7447 | Anote 7 en A |
7 1063857143 | División normal por 7, anote 6 en C |
706 1003638814 | División especial por 1.06, anote 3 en D |
7063 1000636903 | División especial por 1.0006, anote 6 en E |
706361000036881 | Siguiente divisor es 1.00003... |
70636 | ... simplemente borre el resto F-0 |
706363 | y anote 3 en F |
En el lado izquierdo del ábaco, de A a F se han formado las cifras , que podemos leer como el número decimal , pero por supuesto no es un número en absoluto, es solo una escritura condensada o mnemotécnica conveniente para la expresión:
- Nota:
- Si llamamos entonces (la significa factorizado) se ha obtenido de mediante el proceso anterior de factorización, pero a su vez puede obtenerse (aproximadamente) de en la forma que veremos al tratar del antilogaritmo, por lo que existe cierta correspondencia entre los dos términos que podemos representar como:
- En el Apéndice A, encontrará una tabla de pares de tales números que le ayudarán a practicar este proceso de factorización y su inversión.
Continuamos reuniendo los logaritmos de los factores de la tabla Radix y los sumamos en las columnas JKLMNO
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
706363 | |
+84510 | Logaritmo de 7 |
+2531 | Logaritmo de 1.06 |
+130 | Logaritmo de 1.003 |
+26 | Logaritmo de 1.0006 |
+1 | Logaritmo de 1.00003 |
706363 87198 | Logaritmo de 7.447 |
+ + | Columnas unidad |
Ahora podemos borrar 87198 de A-F. Finalmente, tenemos que:
- Nota:
- En ocasiones resultará que la segunda división, la primera especial, no será fácil o realizable usando el método especial debido a que el divisor no es suficientemente cercano a uno; por ejemplo, para el número , si dividimos por nos resulta . En lugar de hacer una segunda división normal, puede intentar este camino:
- Haga la primera división del número por sí mismo truncado a una cifra más uno y multiplique el resultado por , en el ejemplo . Este resultado ya es tratable al ser
- Obtenga el logaritmo del nuevo número
- Obtenga el logaritmo del número original como
Uso de los logaritmos
editarSi ahora seguimos con el ejemplo de cálculo de la raíz séptima de 7447, dado que
Añadimos 3 al resultado anterior y lo dividimos por 7
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
87198 | Logaritmo de 7.447 |
+3 | Logaritmo de 1000 |
387198 | Logaritmo de 7447 |
. | Columna unidad |
7 387198 | Ponga el divisor 7 en algún lugar si lo desea |
/7 | Divida J-O por 7 para obtener: |
7 55314 | Logaritmo de la raíz séptima de 7447 |
. . | Columna unidad |
entonces tenemos
en JKLMN.
Obtención de antilogaritmos
editarPara obtener el antilogaritmo de la cantidad anterior, seguimos el proceso inverso al de calcular logaritmos. En cada etapa restamos el mayor logaritmo presente en la tabla Radix que sea menor que el valor que queda en el ábaco e ingresamos un mnemónico del factor correspondiente.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
7 55314 | logaritmo de la raíz séptima de 7447 |
55314 | Borrar A |
. | Unit rod |
-47712 | Restar logaritmo de 3 |
3 7602 | Anotar 3 en A |
-4139 | Restar logaritmo de 1.1 |
31 3463 | Anotar 1 en B |
-3342 | Restar logaritmo de 1.08 |
318 121 | Anotar 8 en C |
-87 | Restar logaritmo de 1.002 |
3182 34 | Anotar 2 en D |
-30 | Restar logaritmo de 1.0007 |
31827 4 | Anotar 7 en E |
-4 | Restar logaritmo de 1.00009 |
318279 | Anotar 9 en F |
De modo que hemos recogido (o ) en A-F como abreviatura o recordatorio de:
Es decir, del último cálculo que nos resta por hacer:
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLMNO | |
318279 3 | Copiar A a H |
+ + | Varillas unidad |
318279 33 | Tras multiplicación especial por 1.1 |
318279 3564 | Tras multiplicación especial por 1.08 |
318279 3571128 | Tras multiplicación especial por 1.002 |
318279 35736278 | Tras multiplicación especial por 1.0007 |
318279 35739494 | Tras multiplicación especial por 1.00009 |
318279 35739 | Redondeo a 5 cifras. Fin. |
+ | Varilla unidad del resultado |
Finalmente, tenemos
Comparar con
Referencias
editar- ↑ Flower, Robert (1771). The Radix. A New Way of Making Logarithms... in five problems. Londres: J. Beecroft. https://books.google.es/books/about/The_Radix_A_New_Way_of_Making_Logarithms.html?id=mYpaAAAAcAAJ&redir_esc=y.
Otras lecturas
editar- Flower, Robert (1771). The Radix. A New Way of Making Logarithms... in five problems. Londres: J. Beecroft. https://books.google.es/books/about/The_Radix_A_New_Way_of_Making_Logarithms.html?id=mYpaAAAAcAAJ&redir_esc=y.
- Lupton, Sydney (Jul 1913). «Notes on the Radix Method of Calculating Logarithms» (en Ingles). The Mathematical Gazette 7 (106): p. 147-150. doi:. https://www.jstor.org/stable/3605088.
- Roegel, Denis (2011). «A reconstruction of the tables of Briggs’ Arithmetica logarithmica (1624).». LOCOMAT project. Archivado desde el original, el 29 de Julio de 2021.
- Laporte, Jacques (2014). «The Radix Method». Jacques Laporte's Home on the Web. Archivado desde el original, el 2 de Octubre de 2016.
Apéndice A
editar4.17189 | 4.04285 | 2.29060 | 2.14113 | 1.04659 | 1.04633 | 1.36943 | 1.35324 | 7.86385 | 7.12125 |
4.67685 | 4.16275 | 5.16372 | 5.03266 | 5.79831 | 5.15403 | 7.04412 | 7.00630 | 2.43038 | 2.21263 |
9.60365 | 9.06666 | 3.40265 | 3.13107 | 1.06830 | 1.06781 | 1.59324 | 1.56203 | 5.05585 | 5.01115 |
4.09355 | 4.02331 | 2.80847 | 2.40302 | 7.03101 | 7.00442 | 4.06989 | 4.01739 | 1.84582 | 1.82534 |
8.90113 | 8.11147 | 2.88304 | 2.42946 | 2.83821 | 2.41361 | 1.84988 | 1.82755 | 2.93607 | 2.44826 |
4.74550 | 4.17795 | 1.09832 | 1.09763 | 2.38007 | 2.18171 | 6.19995 | 6.03322 | 6.57473 | 6.09531 |
3.61705 | 3.20473 | 2.27024 | 2.13187 | 2.23942 | 2.11783 | 9.83595 | 9.09264 | 1.05463 | 1.05441 |
1.34184 | 1.33212 | 9.93629 | 9.10366 | 8.03035 | 8.00379 | 2.35336 | 2.16915 | 1.28182 | 1.26771 |
9.06939 | 9.00770 | 2.05286 | 2.02630 | 2.26568 | 2.12965 | 6.84595 | 6.13705 | 1.77715 | 1.74517 |
3.45179 | 3.14576 | 3.27494 | 3.09151 | 1.24866 | 1.24053 | 3.85600 | 3.27103 | 1.28472 | 1.27056 |
5.39677 | 5.07873 | 9.18344 | 9.02037 | 5.79272 | 5.15306 | 4. 36.599 | 4.09137 | 4.49722 | 4.12205 |
7.02972 | 7.00424 | 1.22332 | 1.21933 | 2.51469 | 2.24748 | 4.34138 | 4.08494 | 3.88231 | 3.27786 |
1.42789 | 1.41981 | 3.15237 | 3.05075 | 4.91375 | 4.22362 | 1.18935 | 1.18113 | 1.19216 | 1.18350 |
1.67375 | 1.64585 | 8.29751 | 8.03697 | 8.52988 | 8.06587 | 4.09687 | 4.02413 | 3.31497 | 3.10453 |
2.90368 | 2.43681 | 6.30653 | 6.05103 | 1.35283 | 1.34061 | 1.56770 | 1.54493 | 6.08271 | 6.01374 |
6.49005 | 6.08155 | 7.43773 | 7.06238 | 3.29883 | 3.09881 | 1.69325 | 1.65788 | 8.62439 | 8.07751 |
2.96800 | 2.46000 | 9.19384 | 9.02151 | 2.63768 | 2.31444 | 6.17543 | 6.02905 | 1.16747 | 1.16126 |
2.69545 | 2.33651 | 4.41406 | 4.10319 | 1.99068 | 1.94742 | 3.23954 | 3.07920 | 3.45985 | 3.14811 |
2.10857 | 2.05407 | 1.41602 | 1.41142 | 4.41893 | 4.10430 | 2.83271 | 2.41166 | 1.47162 | 1.45110 |
5.71552 | 5.13891 | 2.89104 | 2.43243 | 4.23742 | 4.05890 | 1.09177 | 1.09162 | 4.51555 | 4.12613 |
1.25023 | 1.24178 | 1.63053 | 1.61898 | 2.35108 | 2.16818 | 4.46367 | 4.11442 | 2.41599 | 2.20665 |
2.69042 | 2.33463 | 1.02298 | 1.02291 | 9.20120 | 9.02231 | 6.17930 | 6.02968 | 7.00842 | 7.00120 |
7.81141 | 7.11442 | 5.76492 | 5.14784 | 1.03009 | 1.03008 | 3.46349 | 3.14917 | 7.26571 | 7.03772 |
2.41321 | 2. 20.550 | 6.15088 | 6.02504 | 1.37315 | 1.35596 | 1.70173 | 1.70101 | 3.04836 | 3.01606 |
1.35950 | 1.34554 | 2.52705 | 2.25279 | 1.29474 | 1.27836 | 2.73273 | 2.35100 | 3.51611 | 3.16517 |
7.65032 | 7.09266 | 6.22593 | 6.03742 | 1.14929 | 1.14462 | 6.13905 | 6.02311 | 4.27147 | 4.06741 |
5.88506 | 5.17001 | 6.80772 | 6.13142 | 1.00799 | 1.00798 | 2.10955 | 2.05454 | 1.54209 | 1.52789 |
1.84159 | 1.82304 | 5.85712 | 5.16464 | 1.58256 | 1.55479 | 8.76653 | 8.09533 | 1.13953 | 1.13575 |
3.25911 | 3.08589 | 3.47696 | 3.15344 | 8.82462 | 8.10279 | 6.91399 | 6.14728 | 4.52649 | 4.12857 |
1.86741 | 1.83723 | 1.19165 | 1.18307 | 3.50688 | 3.16253 | 3.02441 | 3.00813 | 3.13302 | 3.04417 |
3.64380 | 3.21214 | 1.74269 | 1.72501 | 8.24788 | 8.03095 | 3.21964 | 3.07300 | 2.99542 | 2.46923 |
1.27878 | 1.26532 | 6.95433 | 6.15351 | 3.42022 | 3.13624 | 3.20609 | 3.06820 | 2.12522 | 2.06246 |
9.42543 | 9.04698 | 2.82294 | 2.40819 | 7.08805 | 7.01255 | 9.05484 | 9.00609 | 1.57501 | 1.55001 |
1.31738 | 1.31333 | 7.90844 | 7.12692 | 5.96431 | 5.18409 | 5.56086 | 5.11105 | 8.63572 | 8.07883 |
3.72464 | 3.23448 | 1.96017 | 1.93162 | 1.27999 | 1.26627 | 1.18029 | 1.17279 | 2.64196 | 2.31607 |
3.20983 | 3.06937 | 1.05217 | 1.05206 | 2.15875 | 2.07875 | 2. 07.870 | 2.03907 | 5.32279 | 5.06429 |
2.10760 | 2.05361 | 1.12346 | 1.12129 | 9.79080 | 9.08728 | 1.09649 | 1.09595 | 1.20539 | 1.20449 |
8.65334 | 8.08154 | 4.87294 | 4.21514 | 4.66657 | 4.16055 | 1.28452 | 1.27040 | 4.73984 | 4.17675 |
1.06697 | 1.06657 | 7.81288 | 7.11461 | 2.03967 | 2.01973 | 2.12189 | 2.06088 | 2.36093 | 2.17294 |
1.15697 | 1.15170 | 4.72064 | 4.17268 | 6.62132 | 6.10322 | 6.14115 | 6.02345 | 2.04996 | 2.02488 |
1.96287 | 1.93299 | 5.92080 | 5.17608 | 8.68776 | 8.08552 | 2.35985 | 2.17248 | 3.57533 | 3.18317 |
3.41811 | 3.13561 | 1.25009 | 1.24167 | 4.48268 | 4.11869 | 4.27201 | 4.06754 | 6.20615 | 6.03423 |
1.25262 | 1.24369 | 1.55821 | 1.53854 | 1.40506 | 1.40361 | 2.20712 | 2.10323 | 8.73994 | 8.09228 |
5.34800 | 5.06905 | 4.01149 | 4.00287 | 2.58202 | 2.27545 | 3.17669 | 3.05847 | 3.22276 | 3.07397 |
5.05718 | 5.01142 | 1.32853 | 1.32191 | 1.99776 | 1.95138 | 6.55713 | 6.09261 | 1.49243 | 1.46568 |
Apéndice B
editarLa siguiente tabla, incluida a título de curiosidad, es una recreación con la computadora de la tabla Radix que figura en la última página de las Tablas de logaritmos de 7 cifras de Ludwig Schrön, publicada por Librería General De Victoriano Suárez en 1953. Esta tabla permitía obtener logaritmos y antilogaritmos de números con hasta 11 dígitos por el método explicado en este capítulo.
1 | 0.00000 | 00000 | 00000 | 000 | 1 | 0.00000 | 04342 | 94264 | 756 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0.30102 | 99956 | 63981 | 194 | 2 | 0.00000 | 08685 | 88095 | 218 | |||
3 | 0.47712 | 12547 | 19662 | 436 | 3 | 0.00000 | 13028 | 81491 | 388 | |||
4 | 0.60205 | 99913 | 27962 | 389 | 4 | 0.00000 | 17371 | 74453 | 266 | |||
- | 5 | 0.69897 | 00043 | 36018 | 803 | 5 | 5 | 0.00000 | 21714 | 66980 | 853 | |
6 | 0.77815 | 12503 | 83643 | 630 | 6 | 0.00000 | 26057 | 59074 | 149 | |||
7 | 0.84509 | 80400 | 14256 | 829 | 7 | 0.00000 | 30400 | 50733 | 157 | |||
8 | 0.90308 | 99869 | 91943 | 584 | 8 | 0.00000 | 34743 | 41957 | 876 | |||
9 | 0.95424 | 25094 | 39324 | 872 | 9 | 0.00000 | 39086 | 32748 | 307 | |||
1 | 0.04139 | 26851 | 58225 | 040 | 1 | 0.00000 | 00434 | 29446 | 018 | |||
2 | 0.07918 | 12460 | 47624 | 827 | 2 | 0.00000 | 00868 | 58887 | 694 | |||
3 | 0.11394 | 33523 | 06836 | 769 | 3 | 0.00000 | 01302 | 88325 | 027 | |||
4 | 0.14612 | 80356 | 78238 | 025 | 4 | 0.00000 | 01737 | 17758 | 017 | |||
0 | 5 | 0.17609 | 12590 | 55681 | 241 | 6 | 5 | 0.00000 | 02171 | 47186 | 664 | |
6 | 0.20411 | 99826 | 55924 | 780 | 6 | 0.00000 | 02605 | 76610 | 968 | |||
7 | 0.23044 | 89213 | 78273 | 928 | 7 | 0.00000 | 03040 | 06030 | 930 | |||
8 | 0.25527 | 25051 | 03306 | 069 | 8 | 0.00000 | 03474 | 35446 | 548 | |||
9 | 0.27875 | 36009 | 52828 | 960 | 9 | 0.00000 | 03908 | 64857 | 823 | |||
1 | 0.00432 | 13737 | 82642 | 573 | 1 | 0.00000 | 00043 | 42944 | 797 | |||
2 | 0.00860 | 01717 | 61917 | 561 | 2 | 0.00000 | 00086 | 85889 | 551 | |||
3 | 0.01283 | 72247 | 05172 | 204 | 3 | 0.00000 | 00130 | 28834 | 261 | |||
4 | 0.01703 | 33392 | 98780 | 354 | 4 | 0.00000 | 00173 | 71778 | 928 | |||
1 | 5 | 0.02118 | 92990 | 69938 | 072 | 7 | 5 | 0.00000 | 00217 | 14723 | 552 | |
6 | 0.02530 | 58652 | 64770 | 240 | 6 | 0.00000 | 00260 | 57668 | 132 | |||
7 | 0.02938 | 37776 | 85209 | 640 | 7 | 0.00000 | 00304 | 00612 | 669 | |||
8 | 0.03342 | 37554 | 86949 | 701 | 8 | 0.00000 | 00347 | 43557 | 162 | |||
9 | 0.03742 | 64979 | 40623 | 634 | 9 | 0.00000 | 00390 | 86501 | 612 | |||
1 | 0.00043 | 40774 | 79318 | 640 | 1 | 0.00000 | 00004 | 34294 | 481 | |||
2 | 0.00086 | 77215 | 31226 | 912 | 2. | 0.00000 | 00008 | 68588 | 962 | |||
3 | 0.00130 | 09330 | 20418 | 118 | 3 | 0.00000 | 00013 | 02883 | 443 | |||
4 | 0.00173 | 37128 | 09000 | 529 | 4 | 0.00000 | 00017 | 37177 | 924 | |||
2 | 5 | 0.00216 | 60617 | 56507 | 675 | 8 | 5 | 0.00000 | 00021 | 71472 | 403 | |
6 | 0.00259 | 79807 | 19908 | 591 | 6. | 0.00000 | 00026 | 05766 | 883 | |||
7 | 0.00302 | 94705 | 53618 | 007 | 7 | 0.00000 | 00030 | 40061 | 362 | |||
8 | 0.00346 | 05321 | 09506 | 485 | 8 | 0.00000 | 00034 | 74355 | 841 | |||
9 | 0.00389 | 11662 | 36910 | 521 | 9 | 0.00000 | 00039 | 08650 | 319 | |||
1 | 0.00004 | 34272 | 76862 | 669 | 1 | 0.00000 | 00000 | 43429 | 447 | |||
2 | 0.00008 | 68502 | 11648 | 956 | 2 | 0.00000 | 00000 | 86858 | 895 | |||
3 | 0.00013 | 02688 | 05227 | 060 | 3 | 0.00000 | 00001 | 30288 | 344 | |||
4 | 0.00017 | 36830 | 58464 | 918 | 4 | 0.00000 | 00001 | 73717 | 792 | |||
3 | 5 | 0.00021 | 70929 | 72230 | 207 | 9 | 5 | 0.00000 | 00002 | 17147 | 240 | |
6 | 0.00026 | 04985 | 47390 | 346 | 6 | 0.00000 | 00002 | 60576 | 688 | |||
7 | 0.00030 | 38997 | 84812 | 491 | 7 | 0.00000 | 00003 | 04006 | 136 | |||
8 | 0.00034 | 72966 | 85363 | 540 | 8 | 0.00000 | 00003 | 47435 | 585 | |||
9 | 0.00039 | 06892 | 49910 | 131 | 9 | 0.00000 | 00003 | 90865 | 033 | |||
1 | 0.00000 | 43429 | 23104 | 453 | ||||||||
2 | 0.00000 | 86858 | 02780 | 326 | ||||||||
3 | 0.00001 | 30286 | 39028 | 488 | ||||||||
4 | 0.00001 | 73714 | 31849 | 808 | ||||||||
4 | 5 | 0.00002 | 17141 | 81245 | 155 | |||||||
6 | 0.00002 | 60568 | 87215 | 395 | ||||||||
7 | 0.00003 | 03995 | 49761 | 398 | ||||||||
8 | 0.00003 | 47421 | 68884 | 033 | ||||||||
9 | 0.00003 | 90847 | 44584 | 167 |
Fases Lunares y Mareas Oceánicas
editarÁbaco de mareas
Introducción
editarEl ábaco de mareas era una calculadora analógica mecánica diseñada para estimar la hora de las mareas oceánicas a partir del aspecto observado de la Luna (fase). Por lo general, se construía sobre el reverso de las nocturlabios, que a su vez eran instrumentos de observación y cálculo para obtener la hora solar local a partir de la posición relativa observada de ciertas estrellas y fecha. Ambos tipos de instrumentos fueron diseñados para su uso en el mar a bordo de embarcaciones. Inspirándonos en tales instrumentos, podemos utilizar nuestro ábaco para obtener horarios de marea aproximados para cualquier día y lugar de la costa con poco esfuerzo, solo tenemos que conocer o ajustar un parámetro local. Pero en lugar de observar la fase de la Luna calcularemos un parámetro relacionado con ella: la edad de la Luna.
Edad de la Luna
editarLos astrónomos usan el término edad de la Luna en dos sentidos completamente diferentes:
- el tiempo transcurrido desde la formación de nuestro satélite, que los astrofísicos estiman en 4.530 millones de años aproximadamente.
- el número de días transcurridos desde la última luna nueva.
Utilizaremos este último concepto relacionado con la fase lunar. El mes lunar (período sinódico lunar), o tiempo de recurrencia de las fases de la luna, oscila en torno a un valor medio de 29.530588861 días (29 d 12 h 44 m 2.8016 s) que aquí redondeamos a 30 días por simplicidad en lo que sigue. De acuerdo con esto tenemos aproximadamente:
Edad de la Luna (días) |
Fase lunar | Iluminación del disco |
---|---|---|
0 | Luna nueva | 0% |
7-8 | Cuarto creciente | 50% |
15 | Luna llena | 100% |
22-23 | Cuarto decreciente | 50% |
0 | 7.5 | 15 | 22.5 | 29-0 |
0 | 7.5 | 15 | 22.5 | 30-0 |
Calcular la edad de la luna en una fecha determinada es un proceso muy complicado si queremos hacerlo con precisión, ya que depende de la movimiento orbital de la Luna alrededor de la Tierra y el de la Tierra alrededor del Sol y ambos (especialmente el de la Luna) son muy complejos, pero si nos conformamos con una precisión de uno o dos días podremos utilizar un algoritmo sencillo.
Algoritmo Oni Oni Nishi
editarVeamos ahora el sencillo algoritmo Oni, Oni, Nishi[1][2] del astrónomo japonés Gen'ichiro Hori (堀源一郎) para fechas entre los años 1750 y 2200.
Para cualquier fecha dd-mm-aaaa del intervalo anterior
Ene | Feb | Mar | Abr | May | Jun | Jul | Ago | Set | Oct | Nov | Dic |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | 0 | 2 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
- Restar 11 del año: aaaa-11
- Dividir el valor obtenido por 19 y retener el resto
- Multiplicar el resto anterior por 11
- Agregar la corrección del mes mes mm dado en la tabla de la derecha
- Sumar el día del mes dd
- Dividir por 30 y retener el resto como edad de la luna
- Nota:
- El nombre del algoritmo es una regla nemotécnica para recordar la tabla de correcciones del mes dada arriba.Las correcciones de enero a junio son 0, 2, 0, 2, 2, 4; cero puede pronunciarse en japonés: O, dos: ni y cuatro shi; con lo que las correcciones indicadas forman las palabras: Oni, Oni, Nishi (鬼、鬼、西) con el significado: demonio, demonio, oeste. De julio en adelante, las correcciones son correlativas.
Por ejemplo, el día 12-04-2021 a las 02:32 UTC fue luna nueva (edad de la luna 0 o 30). Podemos hacer las divisiones siguiendo el método que prefiramos; aquí usaremos la división tradicional y una tabla de división específica para la división por 19:
Regla |
---|
1/19>5+05 |
Ábaco | Comentario |
---|---|
ABCDE | |
2021 | Año |
-11 | Restar 11 |
2010 | Dividir por 19 |
+1 | Revisar A al alza |
-19 | |
1 110 | Regla: 1/19>5+05 sobre C |
1 515 | Resto: 15 |
15 | Borrar ABC |
+150 | Multiplicar por 11 añadiendo 10✕15=150 |
165 | |
+2 | Sumar corrección del mes de Abril: 2 |
+12 | Sumar el día del mes: 12 |
179 | Dividir por 30, regla: 1/3>3+1 sobre C |
389 | Revisar al alza dos veces twice |
+2 | |
-60 | |
529 | Resto: 29 |
por lo que obtenemos 29 como edad de la luna para la fecha indicada. El valor exacto sería 30 o 0 ya que fue un día de novilunio.
Ábaco de mareas
editarLas mareas oceánicas son el resultado de la atracción gravitatoria combinada del Sol y, especialmente, la Luna sobre las aguas de los océanos. El estado de las mismas en un lugar de la Tierra dependerá principalmente de la posición de la Luna y el Sol respecto a dicho lugar; lo cual, a su vez, depende de los dos movimientos orbitales de la Luna alrededor de la Tierra y de esta alrededor del Sol, así como de la rotación de la Tierra alrededor de su eje. El lector podrá, por tanto, imaginar el grado de complejidad que tiene la predicción de los horarios de marea para un lugar dado de la Tierra. Aquí nosotros renunciamos a tal tipo de cálculo y nos vamos a basar en un hecho simple que puede observar a lo largo de su vida cualquiera que viva en zona costera: las mareas bajas ocurren siempre cierto tiempo después del orto y ocaso lunar y las mareas altas el mismo tiempo después del tránsito de la Luna por el meridiano superior o inferior, o lo que es lo mismo, cuando pasa al norte o sur de nuestra posición. El antiguo ábaco de marea mencionado al principio se basaba justamente en este hecho y en que la hora a la que ocurren estos ortos, ocasos y tránsitos están relacionados con la fase lunar.
Renunciando a dar aquí ninguna otra teoría, si es la Edad de la Luna determinada arriba, entonces podemos usar
como un ábaco de tiempo de mareas donde:
- al multiplicar por lo que hacemos es mapear el ciclo lunar de 30 días en un ciclo diurno de 24 horas (un poco extraño pero es así)
- es una constante específica para cada ubicación (de hecho, hay 4 de esas constantes, una para cada una de las mareas altas/bajas que ocurren en un día si las mareas son de tipo semidiurno con dos pleamares y dos bajamares al día como ocurre en la mayor parte del planeta)
El antiguo ábaco de mareas implementaba mecánicamente el cálculo de la expresión anterior.
Como puede verse, una vez obtenida la edad de la luna por el algoritmo dado arriba, el cálculo de los horarios de mareas es trivial sobre el ábaco una vez que se conozcan las constantes a emplear para una localidad determinada. Estas constantes podrían determinarse aproximadamente por observación de las mareas pero quizás el mejor método sea basarse en unas tablas de marea que aparezcan en algún almanaque náutico para la localidad que nos interese. Haga lo siguiente:
- Localice los días de luna llena del año del almanaque.
- Para cada uno de esos días anote la hora de la primera marea alta después del mediodía.
- Asegúrese de que las horas están en una escala de tiempo uniforme. Si está al uso un horario de invierno y otro de verano, convierta todas las horas a horario de invierno o de verano según prefiera.
- Observe que la marea seleccionada ocurre a aproximadamente a la misma hora dentro del año, dentro de un margen de aproximadamente una hora.
- Promedie las horas así obtenidas.
- Como en el plenilunio la edad de la luna es de 15 días, reste 12 horas del promedio anterior ( ). El resultado es la que corresponde a la primera marea alta tras el mediodía los días de plenilunio.
Si las mareas son de tipo semidiurno, la marea anterior es precedida y seguida por una bajamar con un intervalo aproximado de 6 horas y 13 minutos, y será precedida y seguida por otra pleamar a una distancia de aproximadamente 12 horas y 25 minutos de la primera, por lo que no es necesario repetir el cálculo anterior para las otras mareas que ocurren en el día (determinar las otras 3 constantes ).
Ejemplo de aplicación
editarLa siguiente tabla recoge las horas oficiales de la marea alta después del mediodía para los 13 plenilunios del año 2020 para Mazagón, una localidad en la costa atlántica del sur de España. El horario de verano se ha pasado a horario de invierno para tener todas la mareas referidas a la misma escala de tiempo.
Plenilunios | Hora oficial | Hora de invierno | Minutos |
---|---|---|---|
10 Ene 20 | 15:07 | 15:07 | 7 |
9 Feb 20 | 15:38 | 15:38 | 38 |
9 Mar 20 | 15:20 | 15:20 | 20 |
8 Abr 20 | 16:40 | 15:40 | 40 |
7 May 20 | 16:17 | 15:17 | 17 |
6 Jun 20 | 16:42 | 15:42 | 42 |
5 Jul 20 | 16:29 | 15:29 | 29 |
4 Ago 20 | 16:56 | 15:56 | 56 |
2 Sep 20 | 16:34 | 15:34 | 34 |
2 Oct 20 | 16:38 | 15:38 | 38 |
31 Oct 20 | 15:10 | 15:10 | 10 |
30 Nov 20 | 15:16 | 15:16 | 16 |
29 Dic 20 | 14:58 | 14:58 | -2 |
Como puede verse, con las horas en la misma escala de horario de invierno, la marea de referencia ocurre aproximadamente a la misma hora dentro de un margen de una hora. Promediando los minutos, la hora media de la marea resulta ser las 15 horas 26.5 minutos, por lo que restando 12 horas tenemos:
con suficiente precisión, ya que la desviación estándar de los minutos es de 17 minutos. Nuestro ábaco de mareas quedará finalmente para esta localidad como:
Por ejemplo, para el 4 de diciembre de 2021 (novilunio) se tiene días lo que conduce a una marea alta a las 2:42 AM (horario de invierno). Efectivamente, el almanaque indica marea alta a las 2:43 AM, lo que es un perfecto acuerdo pero que debe ser considerado como meramente anecdótico. Piense que puede tener un error de dos días, lo que significa 1.6 horas para la marea, y que la expresión usada sólo toma en cuenta el principal factor que determina el horario de mareas dejando de lado muchos otros importantes y complejos. Esto significa que podemos incurrir en errores que pueden superar las dos horas y, que si bien el ábaco de marea fue un instrumento auxiliar de navegación de cierta popularidad en el siglo XV, hoy tenemos mejores recursos a emplear para una navegación segura. Cuide de su barco y no emplee este algoritmo más que para disfrutar de su ábaco.
Referencias
editar- ↑ Murakami, Masaaki (2020-02-16). «Calculating the lunar (Moon) phase by soroban». Consultado el 2021-12-02.
- ↑ Hori, Genichiro (堀源一郎) (1968). «O ni o ni ni shi -- kan'i getsurei keisan-hō (おに・おに・にし―簡易月齢計算法)» (en Japonés). 天文月報 (The astronomical herald) 61 (7): p. 174-176. ISSN 03742466. https://www.asj.or.jp/geppou/archive_open/1968/pdf/19680704.pdf.