Matemáticas/Matrices/Texto completo


Sección 1: Introducción

editar

Un poco de historia

editar

Las matrices aparecieron por primera vez hacia el año 1850, introducidas por el inglés J. J. Sylvester. Su desarrollo se debe a W. R. Hamilton y a A. Cayley. Además de su utilidad para el estudio de los sistemas de ecuaciones, las matrices aparecen de manera natural en geometría, estadística, economía, etc. Nuestra cultura está llena de matrices de números: El horario de los trenes de cada una de las estaciones es una matriz de doble entrada, la tabla de cotizaciones de la Bolsa en cada uno de los días de la semana es otra, los horarios de clases con columnas (Lunes, Martes, etc) y filas ( 13:30 a 14:15, ...) donde las celdas se completan con las materias, y muchos otros ejemplos. Las tablas de sumar y multiplicar, la disposición de los alumnos en clase, las casillas de un tablero de ajedrez, las apuestas de la loto, los puntos de un monitor de ordenador, son otros tantos ejemplos de la vida cotidiana de matrices. Actualmente, muchos programas de ordenador utilizan el concepto de matriz. Así, las Hojas de Cálculo funcionan utilizando una inmensa matriz con cientos de filas y columnas en cuyas celdas se pueden introducir datos y fórmulas para realizar cálculos a gran velocidad. Esto requiere utilizar las operaciones con matrices.

Sección 2: Conceptos previos

editar

Explicación de conceptos relacionados con el tema

editar

Matriz

editar

Es una disposición de elementos en filas y columnas de forma ordenada.

Operación Binaria

editar

Se define como operación binaria aquella operación matemática, que necesita el operador y dos operandos (argumentos) para que se pueda calcular un valor.

Orden o Dimensión de una matriz

editar

Se llama Orden, Dimensión o tamaño de una matriz a la cantidad de filas y columnas que posee.

Cuerpo o Campo

editar

En álgebra abstracta, un cuerpo o campo es una estructura algebraica en la cual las operaciones de adición y multiplicación se pueden realizar y cumplen las propiedades asociativa, conmutativa y distributiva, además de la existencia de un inverso aditivo y de un inverso multiplicativo, los cuales permiten efectuar la operaciones de sustracción y división (excepto la división por cero); estas propiedades ya son familiares de la aritmética de números ordinarios.

Escalar

editar

Se denomina escalar a los números reales o complejos que sirven para describir un fenómeno físico con magnitud, pero sin la característica vectorial de dirección. Es decir simplemente un valor numérico, sin las características de dirección y sentido que son propia de los vectores. El concepto complementario sería vectorial.

Sección 3: Concepto de Matriz

editar

Matriz es una disposición matemática de elementos pertenecientes a un conjunto, en filas y columnas.

Definiciones de Matriz

editar

Una matriz es un arreglo bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse entre sí.
Es una disposición de valores numéricos y/o variables (representadas por letras), en columnas y filas, de forma rectangular.
Una matriz es una tabla cuadrada o rectangular de datos (llamados elementos o entradas de la matriz) ordenados en filas y columnas, donde una fila es cada una de las líneas horizontales de la matriz y una columna es cada una de las líneas verticales de la matriz. A una matriz con m filas y n columnas se le denomina matriz m x n; y a m y n se les denomina dimensiones de la matriz.
Las dimensiones de la matriz siempre se dan con el número de fila primero y el número de columnas.
Por lo general se trabaja con matrices formadas por números reales. Las matrices se usan generalmente para describir sistemas de ecuaciones lineales, sistemas de ecuaciones diferenciales o representar una aplicación lineal (dada una base).

Una matriz es una colección ordenada de elementos colocados en filas y columnas, o sea es un arreglo bidimensional de números (llamados entradas de la matriz) ordenados en filas (o renglones) y columnas, donde una fila es cada una de las líneas horizontales de la matriz y una columna es cada una de las líneas verticales. A una matriz con m filas y n columnas se le denomina matriz m por n ( ) donde m y n son números naturales mayores que cero. El conjunto de las matrices de tamaño   se representa como  , donde   es el campo al cual pertenecen las entradas. El tamaño de una matriz siempre se da con el número de filas primero y el número de columnas después. Dos matrices se dice que son iguales si tienen el mismo tamaño y las mismas entradas.

Otra definición, muy usada en la solución de sistemas de ecuaciones lineales, es la de vectores fila y vectores columna. Un vector fila o vector renglón es cualquier matriz de tamaño   mientras que un vector columna es cualquier matriz de tamaño  .

A las matrices que tienen el mismo número de filas que de columnas,  , se les llaman matrices cuadradas. y el conjunto se denota   o alternativamente  .

Notación de Leibniz

editar

Se utiliza un elemento único acompañado de índice y subíndice, de manera tal que el índice indique la columna y el subíndice la fila.

 

Notación de Cauchy

editar

Se utilizan elementos distintos uno para cada columna y a cada elemento se le acompaña de un subíndice que indica la fila del elemento.

Notación más usada

editar

Se utiliza un elemento único acompañado de doble subíndice, de manera tal que el par de valores indique la fila y la columna en ese orden.

A la entrada de una matriz que se encuentra en la fila  —ésima y la columna  —ésima se le llama entrada   o entrada  —ésimo de la matriz. En estas expresiones también se consideran primero las filas y después las columnas.

Casi siempre se denotan a las matrices con letras mayúsculas mientras que se utilizan las correspondientes letras en minúsculas para denotar las entradas de las mismas. Por ejemplo, al elemento de una matriz   que se encuentra en la fila  ésima y la columna  ésima se le denota como  , donde   y  . Cuando se va a representar explícitamente una entrada la cuál está indexada con un   o un   con dos cifras se introduce una coma entre el índice de filas y de columnas. Así por ejemplo, la entrada que está en la primera fila y la segunda columna de la matriz   de tamaño   se representa como   mientras que la entrada que está en la fila número 23 y la columna 100 se representa como  .

Además de utilizar letras mayúsculas para representar matrices, numerosos autores representan a las matrices con fuentes en negrita para distinguirlas de otros objetos matemáticos. Así   es una matriz, mientras que   es un escalar en esa notación. Sin embargo ésta notación generalmente se deja para libros y publicaciones, donde es posible hacer ésta distinción tipográfica con facilidad. En otras notaciones se considera que el contexto es lo suficientemente claro como para no usar negritas.

Las matrices se suelen notar con letras mayúsculas y sus elementos si son genéricos con minúsculas y un subíndice que indica la fila y columa en que se encuentra, así a23 hace referencia al elemento que se encuentra en la fila 2 columa 3. Una matriz genérica de tres filas y tres columnas, de dimensión 3x3 es:

Dada la matriz  

 


Otra notación, en si un abuso de notación, representa a la matriz por sus entradas, i.e.   o incluso  .


Grado de una matriz

editar

El grado de una matriz es la cantidad de elementos que tiene por fila o por columna (si es cuadrada) o la raíz cuadrada del número total de elementos.

Tamaño de una Matriz

editar

La dimensión de una matriz viene dada por el número de filas y columnas que tenga, así una matriz de dimensión 2x3 es una matriz con dos filas y tres columnas. Reiterando, la dimensión de una matriz siempre se da con el número de filas primero y el número de columnas después.
O sea que si se anota   significa que se nombra   a una matriz que tiene 7 filas y 5 columnas. La letra   significa que sus elementos son números reales.

Ejemplos

editar

Dada la matriz  

 

es una matriz de tamaño  . La entrada   es 4.


La matriz  

 

es una matriz de tamaño  : un vector fila con 9 entradas.

Finalmente una matríz genérica se representa:  


 


Y una matríz columna genérica  

(1)

 

Sección 4: Tipos de matrices

editar

Existen diversos tipos y clasificaciones de matrices:

Matriz cuadrada

editar

Se dice que una matriz A es cuadrada si tiene el mismo número de filas que de columnas. Ejemplos de matriz cuadrada:


Puede ser una matriz con valores  

 


O también una matríz con subíndices (Genérica) 

 


Puede ser de otro tamaño e incluso con variables  

 

Se llama diagonal principal de una matriz A a la diagonal formada por los elementos  .
Se llama diagonal secundaria a la diagonal del cuadrado que no es la principal, tiene por extremos los elementos   y  , como características, todos los elementos tienen la particularidad que sus subíndices suman (n+1), por ejemplo  , donde 8 + (n - 7 ) = n + 1.

Matriz rectangular

editar

Es aquella matriz que no es cuadrada, esto es que la cantidad de filas es diferente de la cantidad de columnas.
Puede ser de dos formas; vertical u horizontal, y/o puede ser una matriz diagonal.

Al tener distinto número de filas que de columnas, su dimensión es mxn.

 

Matriz de lado lineal o vertical.

editar

Es aquella que tiene más filas que columnas.

Matriz columna

editar

Caso especial de matriz vertical que posee una sola columna.

 

Matriz horizontal

editar

Es aquella que tiene más columnas que filas.

Matriz fila

editar

Caso especial de matriz horizontal que posee una sola fila.

 

Matriz diagonal

editar

Una matriz diagonal es una matriz cuadrada en que las entradas o valores son todos nulas salvo en la diagonal principal, y éstos incluso pueden ser nulos o no. Escrito de otra forma, los elementos   siempre que  .
La matriz identidad es una matriz diagonal.


Ejemplos de matrices diagonales:


Puede ser una matriz con valores  

 


O también una matríz con subíndices (Genérica) 

 


Puede ser de otro tamaño e incluso con variables  

 

Matriz escalar

editar

Una matriz escalar es una matriz diagonal en la que los elementos de la diagonal principal son iguales.

 

Matriz escalonada

editar

Es toda matriz en la que si existe alguna fila nula, esta se encuentra al final de la matriz y el primer valor diferente de cero de una fila se encuentra siempre a la derecha del primer valor diferente de cero en cualquier fila anterior, exceptuando la primera fila de la matriz.
EL proceso se puede aplicar lo mismo por fila que por columna conociendose como escalonada por filas o escalonada por columnas.

Matriz triangular superior

editar

Se dice que una matriz (cuadrada) es triangular superior si todos los elementos que están por debajo de la diagonal principal son nulos.


 

Matriz triangular inferior

editar

Se dice que una matriz es triangular inferior si todos los elementos que están por encima de la diagonal principal son ceros.

 

Matriz identidad

editar

Se llama matriz identidad de orden n y se nota en una matriz cuadrada de orden n en la que los elementos de la diagonal principal son 1 y el resto 0.
 

 


La matriz identidad puede ser de cualquier tamaño, siempre y cuando sea cuadrada

Matriz nula o matriz cero

editar

Una matriz cero o matriz nula es una matriz con todos sus elementos nulos, o sea de valor cero. Algunos ejemplos de matrices nulas son:

 

Por lo tanto, una matriz nula de orden mxn asume la forma:

 

Una matriz cero es, al mismo tiempo,matriz simétrica, antisimétrica, nilpotente y singular.

Matriz opuesta

editar

Teniendo una matriz determinada, se llama matriz opuesta de la antes mencionada a aquella que tiene por elementos los opuestos de los elementos de la matriz original.

Matriz traspuesta

editar

Matriz traspuesta ( AT). Se llama matriz traspuesta de una matriz A a aquella matriz cuyas filas coinciden con las columnas de A y las columnas coinciden con las filas de A.


Dada una matriz A, se llama matriz traspuesta AT a la matriz que se obtiene intercambiando ordenadamente las filas por las columnas de A. Es decir,  

  • Para una matriz  , se define la matriz traspuesta de  , denotada por  , como  . Es decir, las filas de la matriz   corresponden a las columnas de   y viceversa.

Ejemplo 1:

 

Ejemplo 2:

Si  ,
entonces:

 


Propiedades:

  1. (AT)T = A
  2. (A + B)T = AT + BT
  3. (α • A)T = α • AT
  4. (A • B)T = BT • AT

Matriz simétrica

editar

Una matriz es simétrica cuando es una matriz cuadrada, y es igual a su traspuesta.

 

Matriz antisimétrica o hemisimetrica

editar

Una matriz es antisimétrica cuando es una matriz cuadrada, y es igual a su traspuesta de signo opuesto, siendo los elementos de la diagonal principal nulos; de valor cero.

A = – AT

Matriz ortogonal

editar

Una matriz ortogonal es una matriz cuya matriz inversa coincide con su matriz traspuesta.

y cumple que A • AT = I.

Matriz normal

editar

Sea A matriz compleja cuadrada, entonces es una matriz normal si y sólo si

 

donde A* es la matriz traspuesta conjugada de A (también llamado hermitiano)

Matriz conjugada

editar

Una Matriz conjugada es el resultado de la sustitución de los elementos de una matriz   por sus valores conjugados. Es decir, la parte imaginaria de los elementos de la matriz cambian su signo.

Ejemplo de matrices conjugadas

 

Matriz inversa

editar

La matriz inversa de una matriz dada A, es otra, que se anota A −1 y que cumple:

A·A −1 = A −1 · A = I


Matriz invertible

editar

También llamada matriz , no singular, no degenerada, regular.

Una matriz cuadrada A de orden n se dice que es invertible si existe otra matriz cuadrada de orden n, llamada matriz inversa de A y representada como A−1, tal que

AA−1 = A−1A = In,

donde In es la matriz identidad de orden n y el producto utilizado es el producto de matrices usual. Una matriz tiene inversa siempre que su determinante no sea cero.

La inversión de matrices es el proceso de encontrar la matriz inversa de una matriz dada.

Matriz regular

editar

Una matriz regular es una matriz cuadrada que tiene inversa y como consecuencia, su determinante es diferente de cero.

Matriz singular o degenerada

editar

También llamada no regular. Una matriz es singular si y solo si su determinante es cero. Una matriz singular no tiene matriz inversa.

Matriz permutación

editar

La matriz permutación es la matriz cuadrada con todos sus n×n elementos iguales a 0, excepto uno cualquiera por cada fila y columna, el cual debe ser igual a 1.

Matrices iguales

editar

Se dice que dos matrices A y B son iguales si tienen la misma dimensión y son iguales elemento a elemento, es decir, aij=bij i=1,...,n j=1,2,...,m.

Matriz hermitiana

editar

Una matriz Hermitiana (o Hermítica) es una matriz cuadrada de elementos complejos que tiene la característica de ser igual a su propia traspuesta conjugada. Es decir, el elemento en la i-ésima fila y j-ésima columna es igual al conjugado del elemento en la j-ésima fila e i-ésima columna, para todos los índices i y j.

Matriz definida positiva

editar

Una matriz definida positiva es una matriz hermitiana que en muchos aspectos es similar a un número real positivo.

Matriz unitaria

editar

Es una matriz compleja U, de n por n elementos, que satisface la condición:

 

donde   es la matriz identidad y   es el traspuesto conjugado (también llamado el hermitiano adjunto o la hermítica) de U. Esta condición implica que una matriz U es unitaria si tiene inversa igual a su traspuesta conjugada  .

Una matriz unitaria en la que todas las entradas son reales es una matriz ortogonal.

Submatriz

editar

A partir de una Matriz M, se llama submatriz M' a toda matriz obtenida suprimiendo p filas y q columnas en M. Si M es de orden mxn, M' será de orden (m-p)x(n-q), es decir con p filas menos y q columnas menos. Es evidente que p < m ; q < n.


Propiedades

editar

(A · B) −1 = B −1 · A −1

( A −1 ) −1 = A

(k · A) −1 = k −1 · A −1

(A T) −1 = ( A −1 ) T

Resto del capítulo matrices

editar

Sección 5: Determinantes

editar

Definición general de determinante

editar

Llámese determinante de una matriz cuadrada de tercer grado a la suma de los productos de los elementos que pertenezcan a columnas y filas diferentes.

Definición previa

editar

Permutación

editar

Disposición ordenada de todos los elementos disponibles, sin repetirse e intercambiando lugares.

Inversión de una permutación

editar

a) Dadas dos permutaciones de los mismos elementos, si dos elementos de la segunda permutación, independiente de los demás, están en el mismo orden que en la primera, se llama en sucesión, si están en orden inverso, en inversión.
Ejemplo 1; 2 ; 3; 4 : 5 y 1 ; 3 ; 4 ; 2 ; 5 en la segunda permutación de los cinco primeros naturales, el 3 con el 2 está en inversión, y el 4 con el 2 está en inversión con respecto a la permutación original, los demás (p.ej. El 3 con el 5, el 1 con el 4) están en sucesión. O sea en este ejemplo se observan solamente dos inversiones.
b) se llama permutación principal a la ordenación natural de los números 1 2 3 4 5 6 ...
c) Una permutación es de clase par o impar, si el número de sus inversiones con respecto a la permutación principal es par o impar.

Determinante

editar

Llámese determinante de una matriz de n-ésimo grado al polinomio formado por todos los productos posibles de los n elementos que componen la matriz, de tal manera que cada sumando contenga un factor de cada fila y otro de cada columna y asignándole el signo positivo o negativo según que la permutación sea par o impar, respectivamente.

Ley de Formación

editar

Para formar el desarrollo de A, de una matriz cuadrada de orden n, procederemos de la siguiente manera: Tomaremos como término principal al que tiene la pareja de índices en el orden de los números y manteniendo fijo los subíndices de las filas permutamos los subíndices de las columnas, precediendo a cada término del signo positivo o negativo según la permutación sea de orden par o impar, de acuerdo con la definición dada anteriormente.
No podrá haber ningún términ repetido, ni podrán faltar ninguno.
Todos los producto contienen la misma cantidad de factores.

El término principal  :   es el que corresponde a la diagonal principal; esta es la que tiene como primer término, el primero de la izquierda superior y como último el inferior derecho.
También es observable que la pareja de valores de subíndice son iguales para columna que para fila.

Cálculo de determinantes: Regla de Cramer

editar

Para calcular el determinante de una matriz cuadrada de 2x2, se utiliza la regla de Cramer. El determinante es la diferencia de la diagonal principal menos la diagonal secundaria. a_11 x a_22 – a_21 x a_12

Sección 6: Sistema de ecuaciones lineales

editar

Un sistema de ecuaciones lineales, también conocido como sistema lineal de ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales (el término lineal se refiere a que todas las variables tienen exponente 1) que cumplen las propiedades:

  • Combinando dos o más ecuaciones lineales se obtiene siempre otra ecuación también lineal.
  • Posee elementos neutro (opuesto aditivo).
  • La adición entre ecuaciones cumple la propiedad asociativa.
  • La multiplicación por un número real cumple la propiedad distributiva.


A continuación se exponen ejemplos de sistemas lineales de tres ecuaciones:



 


 

También pueden ser de más ecuaciones:


 

Sección 7: Adición y sustracción de matrices

editar

Conceptos previos

editar

Se define como operación binaria aquella operación matemática, que necesita el operador y dos operandos (argumentos) para que se pueda calcular un valor.

En álgebra abstracta, un cuerpo o campo es una estructura algebraica en la cual las operaciones de adición y multiplicación se pueden realizar y cumplen las propiedades asociativa, conmutativa y distributiva, además de la existencia de un inverso aditivo y de un inverso multiplicativo, los cuales permiten efectuar la operaciones de sustracción y división (excepto la división por cero); estas propiedades ya son familiares de la aritmética de números ordinarios.

Condiciones

editar

No todas las matrices se pueden sumar o restar entre sí. La condición necesaria para sumar o restar dos matrices es que tengan la misma dimensión, es decir, que tengan la misma cantidad de filas y de columnas. Para sumar matrices de la misma dimensión se suman entre sí los elementos que ocupan el mismo lugar en cada matriz. Es decir: suma de matrices de las mismas dimensiones, es la aplicación que asocia a cada par de matrices otra matriz de las mismas dimensiones cuyos elementos se obtienen sumando término a término los elementos correspondientes en dichas matrices.

Suma o adición

editar

Sean  . Se define la operación de adición de matrices como una operación binaria   tal que   y donde   en el que la operación de suma en la última expresión es la operación binaria correspondiente pero en el campo  . Por ejemplo, la entrada   es igual a la suma de los elementos   y   lo cual es  .


Siendo  , que pertenecen a los números Reales.


 


 
 


 


Algo mas general se puede describir como:

 
 
 
 


Veamos un ejemplo más explícito. Sea  

 

A la luz de éstos ejemplos es inmediato ver que dos matrices se pueden sumar solamente si ambas tienen el mismo tamaño. La suma de matrices en el caso de que las entradas estén en un campo serán la asociatividad, la conmutatividad, existencia de elemento neutro aditivo y existencia de inverso aditivo. Esto es así ya que éstas son propiedades de los campos en los que están las entradas de la matriz. A continuación se presentan las propiedades.

Propiedades de la Adición de matrices

editar

Para poder sumar dos o más matrices deben tener el mismo tamaño, la misma cantidad de columnas y de filas. Propiedades:

  1. Cerrada: La suma de dos matrices resulta otra matriz de igual tamaño.
  2. Asociativa: (A + B) + C = A + (B + C)
  3. Neutro: Existe una matriz O, con todos sus elementos de valor cero tal que A + O = O + A = A
  4. Simétrico: Cada matriz A, posee su matriz simétrica A' tal que A + A' = A' + A = O

Los elementos de A' son de valor opuesto que sus correspondientes de la matriz A

  1. Conmutativa: A + B = B + A

Sustracción

editar

Se puede definir la sustracción entre dos matrices   como la suma de la primera con la opuesta (simétrica aditiva) de la segunda. 

Resto del capítulo Matrices

editar

Sección 8: Multiplicación de una matriz por un escalar

editar

Producto de una matriz por un escalar

editar

Si multiplicamos una matriz por una escalar, multiplicamos cada elemento de la matriz por ese escalar.

Es decir: producto de un número real por una matriz, es la aplicación que asocia a cada par formado por un número real y una matriz, otra matriz cuyos elementos se obtienen multiplicando el número real por todos los elementos de la matriz.

Ejemplo

editar


Sea   y  

 



Producto por un escalar

editar

Sean   y  . Se define la operación de producto por un escalar como una función   tal que   y donde   en donde el producto es la operación binaria correspondiente pero en el campo  . Por ejemplo, la entrada   es igual al producto  .

Veamos un ejemplo más explícito. Sea   y  

 

También es inmediato ver que el producto por un escalar da como resultado una matriz del mismo tamaño que la original. También el producto por un escalar dependerá de la estructura algebraica en la que las entradas están. En el caso de que estén en un campo serán dos distributividades (una respecto de suma de matrices y otra respecto de suma en el campo), asociatividad y una propiedad concerniente al producto por el elemento neutro multiplicativo del campo. A continuación se presentan las propiedades.

Propiedades

editar

Sean   y  , donde   es un campo, entonces se cumplen las siguientes propiedades para la operación producto por un escalar

Asociatividad

editar
 


Demostración. Dada la definición de la operación se sigue el resultado ya que   debido a que   para todo  .

Distributividad respecto de la suma de matrices

editar
 


Demostración Dada la definición de la operación se sigue el resultado ya que   debido a que   para todo  .

Distributividad respecto de la suma en el campo

editar
 


Demostración Dada la definición de la operación se sigue el resultado ya que   debido a que   para todo  .

Producto por el neutro multiplicativo del campo

editar
 


Demostración Dada la definición de la operación se sigue el resultado ya que   debido a que   para todo  .
Por como se definió la operación de producto por escalares se dice que   es cerrado bajo producto por escalares. Con éstas propiedades y las de la adición se tiene que   es un espacio vectorial con las operaciones de suma y producto por escalares definidas antes.
En el caso de que las entradas y los escalares no estén en un campo sino en un anillo entonces no necesariamente existe el neutro multiplicativo. En caso de que exista, con lo cual el anillo es un anillo con uno, se dice que   es un módulo sobre  .
Ahora, a partir de las propiedades básicas se puede demostrar inmediatamente que

 


Demostración Dada la definición de la operación se sigue el resultado ya que   para todo  .

 


Demostración Dada la definición de la operación se sigue el resultado ya que   para todo   debido a que   para todo  .

 


Demostración Dada la definición de la operación se sigue el resultado ya que como en un campo no hay divisores de cero entonces   para todo   implica que   o  para todo  , i.e.  . No es posible un caso en el que sólo algunas entradas de la matriz sean cero y el escalar sea no nulo ya que en esos casos estaríamos diciendo que hay divisores de cero y llegaríamos a una contradicción, ya que la suposición es que las entradas y los escalares están en un campo.

 



Demostración Dada la definición de la operación se sigue el resultado ya que   debido a que   para todo  .

Este último resultado permite usar la notación   sin riesgo de ambigüedad.

Sección 9: Multiplicación de matrices

editar

Producto de una matriz fila por una matriz columna

editar

Sean A una matriz con una fila y n columnas y B una matriz con n filas y una columna.

Sean   y  

 

Hay que hacer notar que para poder multiplicar A y B debe suceder que el número de columnas de A sea igual al número de filas de B.

El producto de las matrices A y B (A×B) es otra matriz con una fila y una columna cuyo único elemento es: c = a1×b1 + a2×b2 + ... + an×bn.


 

Dónde la matriz producto es como habíamos establecido en la definición: una matriz  . O sea una matríz de un sólo elemento, el valor 27.

Producto de matrices

editar

Dos matrices A y B se dicen multiplicables si el número de columnas de A coincide con el número de filas de B. M(m*n) * M(n*p) = M(m*p); Y ademas m*p nos dirá el tamaño de la matriz resultante. El elemento cij de la matriz producto se obtiene multiplicando cada elemento de la fila i de la matriz A por cada elemento de la columna j de la matriz B y sumándolos.

Ejemplo: A•B =   

  es igual a

  [C(3*3)]; matriz resultante de 3*3



Producto en General

editar
 
Diagrama esquemático que ilustra el producto de dos matrices   y   dando como resultado la matriz  .

El producto de matrices se define de una manera muy peculiar y hasta caprichosa cuando no se conoce su origen. El origen proviene del papel de las matrices como representaciones de aplicaciones lineales. Así el producto de matrices, como se define, proviene de la composición de aplicaciones lineales. En este contexto, el tamaño de la matriz corresponde con las dimensiones de los espacios vectoriales entre los cuales se establece la aplicación lineal. De ese modo el producto de matrices, representa la composición de aplicaciones lineales.

En efecto, en ciertas bases tenemos que   se puede representar como   donde   es la representación de un vector de   en la base que se ha elegido para   en forma de vector columna. Si tenemos dos aplicaciones lineales   y   entonces   y  , luego la aplicación   se representará como   donde   es el producto de las representaciones matriciales de  . Nótese que la composición no se puede dar entre cualquier aplicación sino entre aplicaciones que vayan de  , en particular debe de haber una relación entre las dimensiones de los espacios vectoriales. Una vez dicho ésto podemos definir el producto de la siguiente manera.

Sean   y  . Se define el producto de matrices como una función   tal que   y donde   para toda  , es decir  . Por ejemplo, la entrada  .

Veamos un ejemplo más explícito. Sean   y  

 
 

dónde la matriz producto es como habíamos establecido en la definición: una matriz  .

Sin tomar en cuenta la motivación que viene desde las aplicaciones lineales, es evidente ver que si ignoramos la definición de la función de producto de matrices y sólo se toma en cuenta la definición de las entradas, el producto no estará bien definido, ya que si   no tiene el mismo número de columnas que   de filas entonces no podremos establecer en donde acaba la suma: si la acabamos en el mayor de éstos números habrá sumandos que no están definidos ya que una de las matrices no tendrá mas entradas, mientras que si tomamos el menor habrá entradas de alguna de las matrices que no se tomen en cuenta. Así es necesario que   tenga el mismo número de columnas que   de filas para que   exista.

Como se puede suponer también, las propiedades de ésta operación serán más limitadas en la generalidad ya que además de las limitaciones impuestas por la naturaleza de las entradas está esta limitación respecto a tamaño. Es claro, además, que el producto de matrices no siempre es una operación interna.

Propiedades

editar

Sean   matrices con entradas en  , donde   es un campo, entonces se cumplen las siguientes propiedades para el producto de matrices (considerando que los productos existan)

Asociatividad

editar

A • (B • C) = (A • B) • C

Demostración. Dada la definición de la operación se sigue el resultado ya que, si  ,   y   por lo que   donde   debido a que   para todo  . Aquí estamos considerando que   es  ,   es   y   es  .

Distributividad respecto de la suma de matrices por la derecha

editar
 

Demostración Dada la definición de la operación se sigue el resultado ya que   debido a que   para todo  . Aquí estamos considerando que   es  ,   es   y   es  .

Distributividad respecto de la suma de matrices por la izquierda

editar
 

Demostración Dada la definición de la operación se sigue el resultado ya que   debido a que   para todo  . Aquí estamos considerando que   es  ,   es   y   es  .


El producto de matrices no es conmutativo, si lo fuera la composición de funciones lineales sería conmutativa y eso en general no sucede. Obviamente existen casos particulares de algunos tipos de matrices en los que si hay conmutatividad. En el caso en que tengamos   tendremos que el producto entre matrices en   también está en  . En ese caso   además de espacio vectorial es un álgebra sobre un campo. En el caso de que el conjunto al que pertenecen las entradas sea un anillo conmutativo con uno entonces   además de módulo es un álgebra sobre un anillo. Mas aún   con   el producto de matrices es un anillo.


Elemento neutro

editar

A • I = A

Donde I es la matriz identidad del mismo orden que la matriz A.

Anticonmutativa

editar

En general, y salvo casos muy especiales, el producto de dos matrices no es conmutativo.

A • B ≠ B • A

Sección 10: Regla de Cramer

editar

Temas introductorios

editar

Biografía de Cramer

Cómo calcular determinantes

Determinante

Regla de Cramer

editar

La regla de Cramer es un teorema en álgebra lineal, que da la solución de un sistema lineal de ecuaciones en términos de determinantes. Recibe este nombre en honor a Gabriel Cramer (1704 - 1752), quien publicó la regla en su Introduction à l'analyse des lignes courbes algébriques de 1750, aunque Colin Maclaurin también publicó el método en su Treatise of Geometry de 1748 (y probablemente sabía del método desde 1729) La regla de Cramer es de importancia teórica porque da una expresión explícita para la solución del sistema. Sin embargo, para sistemas de ecuaciones lineales de más de tres ecuaciones su aplicación para la resolución del mismo resulta excesivamente costosa: computacionalmente, es ineficiente para grandes matrices y por ello no es usado en aplicaciones prácticas que pueden implicar muchas ecuaciones.

Fórmulas explícitas para sistemas pequeños

Sistema de 2 ecuaciones con 2 incógnitas

editar

Para la resolución de un sistema de dos ecuaciones con dos incógnitas, de la forma. Dado el sistema de ecuaciones:


 

Lo representamos en forma de matrices:

 

Entonces,   e   pueden ser encontradas con la regla de Cramer, con una división de determinantes, de la siguiente manera:

 

Sistema de 3 ecuaciones con 3 incógnitas

editar

La regla para un sistema de tres ecuaciones con tres incógnitas es similar, con una división de determinantes:


 

Que representadas en forma de matriz es:

 

 ,  ,   pueden ser encontradas como sigue:

 

Sección 11: Biografía de Cramer

editar

Cramer, Gabriel

editar
 
Gabriel Cramer (1704 - 1752)

Nació en 1704 y murió en 1752.

Gabriel Cramer, suizo, trabajó en Análisis y determinantes. Llegó a ser profesor de matemáticas en Ginebra, escribió un trabajo donde relataba la física, también en geometría y la historia de las matemáticas.

Cramer es más conocido por su trabajo en determinantes, pero también hizo contribuciones en el estudio de las curvas algebraicas (1750).


Sección 12: Inversa de una matriz

editar

Para el cálculo de la inversa de una matriz expondremos dos métodos, usando el proceso de Gauss-Jordan y utilizando el concepto de determinante. Antes de explicar su desarrollo definiremos que es una matriz inversa en el siguiente enunciado:

Si   es una matriz cuadrada de  ,   e   es la matriz identidad de  , entonces   se llama la inversa de   por la izquierda.

Del anterior enunciado podemos deducir el siguiente teorema:

La matriz   es no singular si y sólo si   es invertible. Si  , entonces  .

Para encontrar la inversa de una matriz por el método de Gauss-Jordan debemos tener una matriz ampliada de la siguiente forma:

Sea la matriz    

y la matriz    

La matriz ampliada queda de la forma  

Aplicando Gauss-Jordan llegamos a la siguiente matriz ampliada  

Donde la matriz  , inversa de   es  

El siguiente método es el más usado para el cálculo de matrices inversas, se describe bajo la ecuación  

Sección 13: Otra página de multiplicación de matrices

editar

Ya vimos en los temas anteriores que se pueden extender las operaciones para los números reales a los sistemas con vectores y matrices, en cuanto a la multiplicación se puede extender en el producto escalar por matriz y el producto entre matrices.

Definición

editar

  es una matriz de n x m,  , y   es una matriz de m x k,  , el producto   es la matriz de n x k,   .

Cálculo del producto de matrices

editar

Si   es una matriz de dimensiones m x r y   otra matriz de dimensiones r x n, entonces para calcular el elemento que está en el renglón i-ésimo y la columna j-ésima de   y que se denomina   se toma el renglón i-ésimo de la matriz A y la columna j-ésima de B. Se multiplican los elementos correspondientes del renglón y la columna y después se suman los productos. Esta expresión equivale a:

 

Seguidamente, se desarrolla un ejemplo con dos matrices de 2 x 2. Sean las siguientes matrices:

 

De acuerdo a lo anterior, el producto se calcula así:

 

Como podemos observar, el número de columnas de   debe corresponder al número de renglones que haya en   para que el producto de las matrices esté definido. También, la definición de   muestra que la matriz producto tiene idéntica cantidad de filas o renglones que   y de columnas que  .

Cálculo parcial del producto de matrices

editar

En ocasiones, no es necesario calcular todos los elementos de un producto de matrices, sino una fila o una columna determinada. Para ello, supondremos que existen dos matrices   y   de dimensiones m x r y r x n, respectivamente. Si se desea calcular los elementos de la fila i-ésima de la matriz producto, se deberá tomar de la matriz   únicamente la fila i-ésima y multiplicarla por la matriz  . Esto se representa así:

 
 

En el caso de los elementos de la columna j-ésima de la matriz producto, se deberá tomar de la matriz   únicamente la columna j-ésima y multiplicarla por la matriz  :

 

En ambos casos, cada elemento de la fila i-ésima y columna j-ésima de la matriz producto es calculado así:

 

Propiedades del producto entre matrices

editar
  1.   Propiedad asociativa.
  2.   Propiedad distributiva izquierda.
  3.   Propiedad distributiva derecha.
  4.   Para cualquier  .
  5.   Identidad de la multiplicación entre matrices. Las matrices   e   denotan a la Matriz identidad.

Bibliografía

editar
  1. Apuntes de clase de Álgebra Lineal. Universidad Distrital Francisco José de Caldas.
  2. ANTON, Howard. Introducción al álgebra lineal. Editorial Limusa, México, 1985. ISBN 968-18-0631-X
  3. LAY, David. Álgebra lineal y sus aplicaciones. Pearson Educación, México, 2007. ISBN 970-26-0906-2

Sección 14: Teoremas

editar

Teorema 1: Permutación de elementos por conjugados

editar

Si se permutan cada elemento por su conjugado, es decir, si se cambian las filas por las columnas y las columnas por las filas, en forma tal que el orden de los elementos permanezcan invariable, el valor de la matriz, o sea, el determinante no cambia. Obsérvese que los subíndices se intercambian, esto es a1 ; 4 se transforma en a4 ; 1 y en general a j k se transforma en a k j .

Teorema 2: Permutaciones de líneas

editar

El valor de un determinante, cambia de signo ( de positivo a negativo o de negativo a positivo) cuando en la matriz que representa se cambian entre sí dos filas o dos columnas.

Teorema 3: Determinante nulo

editar

El determinante de una matriz que tiene dos filas o dos columnas iguales es nulo.

Teorema 4: Invariablidad del determinante

editar

El valor de una matriz no cambia. El determinante es equivalente a una función lineal y homogénea de los elementos de una misma fila o columna.

Teorema 5: Elementos de una línea nulos

editar

Si los elementos de una misma fila (o columna) son nulos, el desarrollo de la matriz en tales condiciones es también nulo, es decir su determinante es cero.

Teorema 6: Multiplicación de una línea por una constante

editar

Al multiplicar todos los elementos de una columna o fila por una constante K el determinante queda multiplicado por k.

Teorema 7: Elementos equimúltiplos

editar

Una matriz en la cual los elementos de dos líneas paralelas son proporcionales (equimúltiplos), el desarrollo de tal matriz es nulo, o sea su determinante vale cero. En otras palabras, una matriz es nula, si los elementos de una línea son proporcionales a los elementos de otra línea paralela a la primera.

Teorema 8: Línea nula

editar

Una matriz que tiene nulos (valor cero) todos los elementos de una línea, columna o fila, su determinante vale cero.

Lema del menor complementario y del adjunto

editar

Si tomamos el menor complementario y el adjunto de una matriz que correspondan al primer elemento de tal matriz, los valores de aquellos (adjunto y menor) son iguales, o sea que el adjunto es el determinante del menor complementario.

Teorema 9: Adjunto y menor complementario

editar

El adjunto de un elemento cualquiera es igual al valor absoluto del menor complementario correspondiente al mismo elemento; tomando el signo positivo o negativo según que la permutación doble que se origina, al cambiar la posición del elemento considerado, a primer elemento, sea de orden par o impar respectivamente.

Teorema 10: Matriz triangular

editar

Si una matriz tiene todos los elementos nulos a un lado de la diagonal principal, el valor del determinante de esta matriz, es el del producto formado por los elementos de la diagonal principal con el signo correspondiente.

Teorema 11: Sustitución de una línea

editar

Si en una matriz reemplazamos una línea por una paralela a aquella, el valor de la matriz que resulta, es nulo.

Teorema 12: Descomposición de una línea

editar

Si los elementos de una línea son p sumandos, se puede descomponer el determinante en sumas de p determinantes, que tienen las mismas líneas restantes y en lugar de aquella, la formada por los primeros sumandos, por los segundos sumandos, etc respectivamente. Dicho de otra forma, si una matriz tiene una línea formada por n elementos polinómicos, la matriz primitiva puede descomponerse en suma de n matrices del mismo orden.

Teorema 13: Combinación lineal

editar

El desarrollo de una matriz, el determinante, no varía cuando se suman a los elementos de una línea, los que corresponden a otra paralela a la considerada multiplicados previamente por un número cualquiera c1, mas los elementos correspondientes de otra línea, siempre paralela a la considerada, multiplicados por otro número c2, etc ( o sea agregándole una combinación lineal de líneas paralelas) Este teorema permite simplificar los determinantes, reduciendo a cero varios elementos de una misma línea mediante sumas o restas convenientes, o sea sustituyendo una fila por una combinación lineal de las restantes. Cada elemento que se logra anular de este modo evita el cálculo de un menor complementario, al desarrollar el determinante por los elementos de una línea. Si se logra anular así todos los elementos de una línea excepto uno, el producto de éste por su adjuto es igual al determinante total. Si se logra anular a todos los elementos, entonces el valor del determinante es cero.