Aritmética/Pre-Algebra/Potenciación y Radicación
Potencias
editarDefinición
editarSea un número real y un entero positivo. Se define la potencia -ésima de de la forma
Es decir, la potencia -ésima de es el resultado de multiplicar consigo mismo veces.
En la expresión , se llama base y se llama exponente.
Ejemplos
editarCalcular las siguientes potencias
Notas: por los ejemplos vistos, podemos ver que
a) Si la base está elevada a exponente par, la potencia es siempre positiva.
b) Si el exponente es impar, la potencia conserva el signo de la base.
c) La potenciación no es una operación distributiva sobre la suma o la resta; es decir, en la potenciación se tiene que
Propiedades de las potencias
editar- Potencia de exponente cero:
- Potencia de exponente entero negativo:
- Multiplicación de potencias de igual base:
- División de potencias de igual base:
- Potencia de una potencia:
- Multiplicación de potencias de igual exponente:
- División de potencias de igual exponente:
Ejemplos
editarResolver los siguientes problemas de potencias
1) Para , hallar el valor de .
Sol:
2)
Sol: tenemos que
3)
Sol:
4)
Sol: tenemos que
Raíces
editarDefinición
editarPara natural, reales, diremos que la raíz -ésima de es siempre que
donde es el índice, la cantidad subradical, y la raíz.
Ejemplos
editar- Calcular
Sol: Acá, como el índice es 2, buscamos un número que elevado a 2 de como resultado 81. Claramente, tal número es 9. Luego,
Sol: En esta ocasión el índice es 3; luego, buscamos un número que elevado a 3 de como resultado 27. Tal número es 3. Luego,
Sol:
Sol:
Sol: buscamos un número que multiplicado 3 veces de como resultado . Ese número debe ser negativo, pues la potencia impar de una base negativa, es negativa. Luego, el número buscado es . Así, tenemos que
Nota: por los ejemplos vistos, podemos ver que, en general, .
Propiedades de las raíces
editarEjemplos
editarResolver las siguientes expresiones con raíces
1)
Sol: tenemos que
2)
Sol: Vemos que las raíces no son exactas. Luego, tenemos que descomponer éstas en números que tengan raíz exacta, para después separar y al final reducir términos semejantes. Tenemos
3)
Sol: Usando la propiedad 5) dos veces, empezando por la raíz interior, tenemos que
Racionalización
editarRacionalizar una fracción es convertir una fracción cuyo denominador es irracional en una fracción equivalente cuyo denominador es racional.
Caso i: cuando el denominador es un monomio
editarSe sigue la siguiente relación:
Ejemplos
editarCaso ii: cuando el denominador es un binomio que contiene radicales de segundo orden
editarSe sigue la siguiente relación:
Ejemplo
editarSol:
Ejercicios Propuestos
editarRevisar y desarrollar la siguiente lista de Ejercicios Propuestos de Potencias y Raíces.