Variable Compleja/Los Números Complejos/Representación de Números Complejos
Forma Rectangular
editarEsta es la representación mas común de los números complejos,se compone de:
Donde es un número real ( ),y es el número imaginario ( )y su unión es con un símbolo positivo o negativo
Forma Trigonométrica
editarAplicando el Teorema de Pitagoras en un Plano Complejo,se puede obtener la representación trigonométrica que corresponder a:
Donde representa el ángulo o Argumento formado en el Plano de Angard y es el Valor Absoluto o Módulo del Número Complejo
Al despejar a y b obtenemos
Sustituimos y su representación queda así:
Forma Polar
editarAl aplicar la Fórmula de Euler, vemos que:
No obstante, el ángulo no está unívocamente determinado por z, pueden existir infinitos números complejos que tienen el mismo valor representado en el plano, que se diferencian por el número de revoluciones, ya sean de sentido antihorario (positivas) u horario (negativas) las cuales se representan por números enteros , como implica la fórmula de Euler:
Por esto, generalmente restringimos al intervalo [-π, π) y a éste restringido lo llamamos argumento principal de z y escribimos φ=Arg(z). Con este convenio, las coordenadas estarían unívocamente determinadas por z.
También puede tener estas dos representaciónes
-En forma de Subíndice
-O cómo Ángulo
Este tipo de representación es la más recomendable para efectuar multiplicaciones y divisiones
Forma Exponencial
editarEstá forma solamente es aplicando la Fórmula de Euler.
Donde se saca el Módulo
y el Argumento
Quedando así.