Usuario:Aaaw04/ejercicio16
Derivar Ëx(P(x) ^ Ây(P(y)→(x=y))) a partir de la premisa consistente en que ËxP(x) ^ Âx Ây(P(x) ^ P(y) → ((x=y)
1. ËxP(x) ^ Âx Ây (P(x) ^ P(y)→(x=y) Premisa 2. P(a) ^ Âx Ây(P(x) ^ P(y)→ (x=y)) 1, Sx/a 3. Âx Ây(P(x) ^ P(y)→(x=y) 2, simplificfacion 4. Ây(P(a) ^ P(y)→(a=y) 3, Sx/a 5. P(a) ^ (P(y)→(a=y)) 4, Sy/y 6. P(y) → (a=y) 5, simplificacion 7. Ây(P(Y)→(a=y)) 6, GU 8. P(a) 2, simplificacion 9. P(a) ^ Ây(P(y)→(a=y)) 7,8, combinacion 10.Ëx(P(x) ^ Ây(P(y)→(x=y)) 9, GE