Este teorema establece:
Usando la fórmula para calcular el valor de (que también es representado ocasionalmente como o ) se obtiene la siguiente representación:
El coeficiente de en el desarrollo de es
donde recibe el nombre de coeficiente binomial y representa el número de formas de escoger k elementos a partir de un conjunto con n elementos.
Usualmente el teorema del binomio se expresa en la siguiente variante:
Para obtener la expansión de las potencias de una resta, basta con tomar -y en lugar de y en los términos con potencias impares de y. La expresión (2) queda de la siguiente forma:
El teorema del binomio dio un vuelco cualitativo cuando el exponente de la potencia de un binomio , se considera un número racional; obviamente con una cantidad infinita de términos, si se trata de exponentes enteros negativos o números fraccionarios, y, correlativamente, los los números combinatorios que se se usan en dichos casos, difieren del típico número combinatorio de enteros no negativos.<ref> Banach, Stefan: "Cálculo diferencial e integral", ISBN 968-18-3949-8, (1991)
↑A Isaac Newton le cupo ampliar para potencia racional que es un desarrollo infinito