Números y Operaciones/Números Enteros B

Números Enteros

editar
 

Los números enteros son un conjunto de números que incluye a los números naturales distintos de cero (1, 2, 3, ...), los opuestos de los números naturales (..., −3, −2, −1) y al cero, 0.


 



El conjunto de todos los números enteros se representa por la letra ℤ = {..., −3, −2, −1, 0, +1, +2, +3, ...}, que proviene del alemán Zahlen («números», pronunciado [ˈtsaːlən]).


En la matemática moderna el conjunto de los números enteros al abarcar todos los enteros tanto negativos como positivos, representándolos en una recta numérica "llega" hasta el infinito hacia ambos lados, en rigor no existe un comienzo ni un final. La situación no cambiaría en el caso de usar el cero como "origen" para su localización.


Operaciones Básicas en ℤ

editar

Adición: En los números enteros distinguimos dos casos para la adición.

  • Enteros de igual signo: si los números tienen igual signo, se suman y se conserva el signo.

Ejemplos

 

Ambos números tienen el mismo signo positivo. Se suman y se conserva el signo.

 

Ambos números tienen el mismo signo negativo. Se suman y se conserva el signo.


  • Enteros de distinto signo: considerando ambos números como positivos, se hace la resta entre el número mayor y el menor, y al resultado se le mantiene el signo del número mayor.

Ejemplos

 

Los números enteros son de distintos signos. Al mayor, 13, se le resta el menor, 5, y al resultado, 8, se le conserva el signo del mayor, 13, que tiene signo negativo.

 

Los números enteros son de distintos signos. Al mayor, 13, se le resta el menor, 3, y al resultado, 10, se le conserva el signo del mayor, 13, que tiene signo positivo.

Ejercicios

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  

Multiplicación: Para multiplicar dos números enteros es necesario tener presente que el producto de dos enteros de igual signo es siempre positivo, mientras que el producto de dos enteros de distinto signo es siempre negativo.

   Signo del N°      Multiplicación      Signo del N°     Signo del resultado 
+ x + +
+ x - -
- x + -
- x - +


Ejemplos

 


 


 


 



Ejercicios:

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

(g)  

(h)  

Números Pares

editar

Los números enteros se pueden subdividir en dos categorías, el conjunto de los números pares y el conjunto de los números impares.

Los números pares están formados por los números enteros múltiplos de 2, es decir, un número entero m es número par si y solo si existe otro número entero n tal que:

 

Ejemplo 1

Supongamos que  , entonces  .

Ejemplo 2

Supongamos que  , entonces  .

Así tenemos que el conjunto de los números pares es:

 


Números Impares

editar

Los números impares está formada por los números enteros que no son múltiplos de 2, es decir, un número entero m es número impar si y solo si existe otro número entero n tal que:

 

Ejemplo 1

Supongamos que  , entonces  

Recuerde que si son mas de dos operaciones se respeta la multiplicación y después la adición.

Ejemplo 2

Supongamos que  , entonces  

Así tenemos que el conjunto de los números pares es:

 

Resta o Sustracción en ℤ

editar

Se define la sustracción de dos enteros como,

 


es decir, la sustracción se transforma en adición, sumando al minuendo el opuesto del sustraendo.

Ejemplo 1

 

Ejemplo 2

 

Ejercicio: Calcule las siguientes sustraciones o restas

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  

División en ℤ

editar

La división en ℤ conserva la misma estructura que la multiplicación. Es decir, la división de dos números de igual signo es siempre positiva, mientras que la división de números de distinto signo es siempre negativa.

   Signo del N°       División       Signo del N°     Signo del resultado 
+   + +
+   - -
-   + -
-   - +


Ejemplos

 


 


 


Ejercicios:

(a)   (b)   (c)   (d)   (e)   (f)  

Propiedades Aritméticas en ℤ

editar

Las Propiedades Aritméticas en ℤ al igual que en los números naturales son expresiones combinadas de todas las operaciones que hemos visto hasta ahora y hay dos cosas importantes para los desarrollos de ejercicios combinados.

  • Si el ejercicio no tiene paréntesis, el orden en que se operan los números es siempre: multiplicación y división, suma, resta.

Es importante considerar que se opera en orden de izquierda a derecha.

  • Si el ejercicio tiene paréntesis, primero deben ser resueltos éstos, considerando que si el paréntesis está precedido por un signo menos, los signos interiores deben ser cambiados.

Ejemplos

1. Resolver la expresión

 

Solución: Como el ejercicio no presenta paréntesis, primero resolvemos la multiplicación, luego la división, para finalmente resolver las sumas y restas. Entonces tenemos que:

 

2. Resolver la expresión

 

Solución: la expresión tiene paréntesis, luego empezamos resolviendo por allí, para después respetar el orden: multiplicación, división, suma, resta. Entonces tenemos que:

 

3. Resolver la expresión

 

Solución: en este caso, al no haber paréntesis que separen las operaciones división y multiplicación, se resuelve de izquierda a derecha, primero resolviendo la división  , y luego se multiplica por ((-2)+1).Entonces tenemos que:

 

Valor Absoluto

editar

Considerando una recta (llamada recta Real) como la representación gráfica del conjunto de los números reales, cada punto representa a un número real. El valor Absoluto, se interpreta como la distancia que hay entre un número y el cero.

Desde un punto de vista geométrico, el valor absoluto de un número real   es siempre positivo o cero, pero nunca negativo. Formalmente se define como

 

Por definición, el valor absoluto de   siempre será mayor o igual que cero y nunca número negativo.


Ejemplos

  1.  
  2.  
  3.  
  4.  
  5.  

Ejercicio: Evaluar

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  


El valor absoluto de la diferencia de dos números reales es la distancia entre ellos ( o mejor dicho la distancia entre los puntos que los representan en la recta Real. De hecho, el concepto de función distancia o métrica en matemáticas se puede ver como una generalización del valor absoluto de la diferencia, a la distancia a lo largo de la recta numérica real. Formalmente la distancia entre dos números reales a y b, que se escribe  , se define como el valor absoluto de la diferencia de ambos números:

 

Ejemplo La distancia entre −5 y 4 es:

 

Ejercicios

  1. Calcule la distancia entre -2 y -5.
  2. Calcule la distancia entre -2 y 4.
  3. Calcule la distancia entre 5 y 10.
  4. Calcule la distancia entre -6 y 3.

Propiedades Fundamentales

editar

(a)   y   si y solamente si  .

(b) Si   y  , entonces  .

(c)   (Esta propiedad es llamada desigualdad triangular).

(d)  .

(e)  .

Podemos chequear estas propiedades

(a)  ,   y  .

(b) Si  , se cumple  .

(c) Si  ,  , es fácil ver que  . Si  ,  , se tiene que  .

(d) Si  ,  , se tiene que  .

(e) Si  ,  ,  .