T
(
d
x
)
|
x
⟩
=
|
x
+
d
x
⟩
{\displaystyle T(dx)|x\rangle =|x+dx\rangle }
(
I
−
i
ℏ
P
d
x
)
|
x
⟩
=
|
x
+
d
x
⟩
{\displaystyle ({\mathcal {I}}-{\frac {i}{\hbar }}Pdx)|x\rangle =|x+dx\rangle }
P
|
x
⟩
=
|
x
+
d
x
⟩
−
|
x
⟩
d
x
i
ℏ
{\displaystyle P|x\rangle ={\frac {|x+dx\rangle -|x\rangle }{dx}}i\hbar }
⟨
x
|
P
†
=
⟨
x
|
P
=
−
i
ℏ
⟨
x
+
d
x
|
−
⟨
x
|
d
x
{\displaystyle \langle x|P^{\dagger }=\langle x|P=-i\hbar {\frac {\langle x+dx|-\langle x|}{dx}}}
¿Cómo actúa P sobre el estado
|
Ψ
⟩
{\displaystyle |\Psi \rangle }
?
⟨
z
|
P
|
Ψ
⟩
=
∫
−
∞
∞
d
x
′
⟨
x
|
P
|
x
′
⟩
⟨
x
′
|
Ψ
⟩
{\displaystyle \langle z|P|\Psi \rangle =\int _{-\infty }^{\infty }dx'\langle x|P|x'\rangle \langle x'|\Psi \rangle }
I
0
∫
−
∞
∞
d
x
′
|
x
′
⟩
⟨
x
′
|
{\displaystyle {\mathcal {I}}0\int _{-\infty }^{\infty }dx'|x'\rangle \langle x'|}
=
i
ℏ
⟨
x
+
d
x
|
−
⟨
x
|
d
x
∫
d
x
′
|
x
′
⟩
Ψ
(
x
′
)
{\displaystyle =i\hbar {\frac {\langle x+dx|-\langle x|}{dx}}\int dx'|x'\rangle \Psi (x')}
=
−
i
ℏ
∫
−
∞
∞
d
x
′
⟨
x
+
d
x
|
x
⟩
d
x
Ψ
(
x
′
)
{\displaystyle =-i\hbar \int _{-\infty }^{\infty }dx'{\frac {\langle x+dx|x\rangle }{dx}}\Psi (x')}
=
−
i
ℏ
∫
−
∞
∞
d
x
′
−
⟨
x
|
x
′
⟩
⏞
δ
(
x
−
x
′
)
d
x
Ψ
(
x
′
)
{\displaystyle =-i\hbar \int _{-\infty }^{\infty }dx'{\frac {-\overbrace {\langle x|x'\rangle } ^{\delta (x-x')}}{dx}}\Psi (x')}
=
i
ℏ
(
Ψ
(
x
+
d
x
)
−
Ψ
(
x
)
d
x
)
{\displaystyle =i\hbar \left({\frac {\Psi (x+dx)-\Psi (x)}{dx}}\right)}
=
i
ℏ
d
f
d
x
=
⟨
x
|
P
|
Ψ
⟩
{\displaystyle =i\hbar {\frac {df}{dx}}=\langle x|P|\Psi \rangle }
Recapitulemos:
Cuanto tenemos un estado
|
α
⟩
{\displaystyle |\alpha \rangle }
en el caso discreto (que es lo que estamos haciendo)
|
α
⟩
≐
(
α
1
⋮
)
{\displaystyle |\alpha \rangle \doteq {\begin{pmatrix}\alpha _{1}\\\vdots \end{pmatrix}}}
α
i
=
⟨
e
i
|
α
⟩
(componente i de
|
α
⟩
)
{\displaystyle \alpha _{i}=\langle e_{i}|\alpha \rangle \quad {\text{(componente i de }}|\alpha \rangle {\text{ )}}}
A
|
α
⟩
≐
(
A
11
A
12
⋯
)
(
α
1
)
{\displaystyle A|\alpha \rangle \doteq {\begin{pmatrix}A_{11}&A_{12}&\cdots \\&&\\&&\end{pmatrix}}{\begin{pmatrix}\alpha _{1}\\\\\end{pmatrix}}}
Componente
i
{\displaystyle i}
de
A
|
α
⟩
{\displaystyle A|\alpha \rangle }
es
⟨
e
i
|
A
|
α
⟩
{\displaystyle \langle e_{i}|A|\alpha \rangle }
{
|
x
⟩
}
c
o
n
t
i
n
u
o
{\displaystyle \{|x\rangle \}\ continuo}
|
Ψ
⟩
≐
Ψ
(
x
)
{\displaystyle |\Psi \rangle \doteq \Psi (x)}
P
|
Ψ
⟩
≐
−
i
ℏ
d
Ψ
(
x
)
d
x
{\displaystyle P|\Psi \rangle \doteq -i\hbar {\frac {d\Psi (x)}{dx}}}
El operador momento si utilizo la base de las
x
{\displaystyle x}
es
P
≐
−
i
ℏ
d
d
x
{\displaystyle P\doteq -i\hbar {\frac {d}{dx}}}
P
→
≐
−
i
ℏ
∇
{\displaystyle {\vec {P}}\doteq -i\hbar \nabla }
=
−
i
ℏ
(
P
x
,
P
y
,
P
z
)
{\displaystyle =-i\hbar \left(P_{x},P_{y},P_{z}\right)}
Os dejo que os convenzáis de que en una dimensión
⟨
X
⟩
Ψ
=
⟨
Ψ
|
X
|
Ψ
⟩
=
∫
d
x
Ψ
∗
(
x
)
x
Ψ
(
x
)
{\displaystyle \langle X\rangle _{\Psi }=\langle \Psi |X|\Psi \rangle =\int dx\Psi ^{*}(x)x\Psi (x)}
⟨
P
⟩
Ψ
=
⟨
Ψ
|
P
|
Ψ
⟩
=
∫
d
x
Ψ
∗
(
x
)
(
−
i
ℏ
d
Ψ
(
x
)
d
x
)
{\displaystyle \langle P\rangle _{\Psi }=\langle \Psi |P|\Psi \rangle =\int dx\Psi ^{*}(x)\left(-i\hbar {\frac {d\Psi (x)}{dx}}\right)}
⟨
X
i
⟩
Ψ
=
⟨
Ψ
|
X
i
|
Ψ
⟩
=
∫
d
3
x
Ψ
∗
(
x
→
)
x
i
Ψ
(
x
→
)
{\displaystyle \langle X_{i}\rangle _{\Psi }=\langle \Psi |X_{i}|\Psi \rangle =\int d^{3}x\Psi ^{*}({\vec {x}})x_{i}\Psi ({\vec {x}})}
⟨
P
i
⟩
Ψ
=
⟨
Ψ
|
P
i
|
Ψ
⟩
=
∫
d
3
x
Ψ
∗
(
x
→
)
(
−
i
ℏ
∂
Ψ
(
x
→
)
∂
x
i
)
{\displaystyle \langle P_{i}\rangle _{\Psi }=\langle \Psi |P_{i}|\Psi \rangle =\int d^{3}x\Psi ^{*}({\vec {x}})\left(-i\hbar {\frac {\partial \Psi ({\vec {x}})}{\partial x_{i}}}\right)}
Alternativamente podría haber usado una base de estados
{
p
→
}
{\displaystyle \{{\vec {p}}\}}
propios de
P
→
{\displaystyle {\vec {P}}}
(representación de momentos)
P
→
|
p
→
⟩
=
p
→
|
p
→
⟩
{\displaystyle {\vec {P}}|{\vec {p}}\rangle ={\vec {p}}|{\vec {p}}\rangle }
P
i
|
p
→
⟩
=
p
i
|
p
→
⟩
{\displaystyle P_{i}|{\vec {p}}\rangle =p_{i}|{\vec {p}}\rangle }
⟨
p
→
|
p
→
⟩
=
δ
3
(
p
→
−
p
→
′
)
=
Π
i
δ
(
p
i
−
p
i
′
)
{\displaystyle \langle {\vec {p}}|{\vec {p}}\rangle =\delta ^{3}({\vec {p}}-{\vec {p}}\ ')=\Pi _{i}\delta (p_{i}-p_{i}')}
∫
d
3
p
|
p
→
⟩
⟨
p
→
|
{\displaystyle \int d^{3}p|{\vec {p}}\rangle \langle {\vec {p}}|}
|
Ψ
⟩
{\displaystyle |\Psi \rangle }
su función de onda en esa representación se etiqueta
Ψ
^
(
p
→
)
=
⟨
p
→
|
Ψ
⟩
{\displaystyle {\hat {\Psi }}({\vec {p}})=\langle {\vec {p}}|\Psi \rangle }
Ψ
(
x
→
)
=
⟨
x
→
|
Ψ
⟩
{\displaystyle \Psi ({\vec {x}})=\langle {\vec {x}}|\Psi \rangle }
⟨
Ψ
|
Ψ
⟩
=
∫
R
3
d
3
p
Ψ
^
(
p
→
)
∗
Ψ
^
(
p
→
)
{\displaystyle \langle \Psi |\Psi \rangle =\int _{\mathbb {R} ^{3}}d^{3}p{\hat {\Psi }}({\vec {p}})^{*}{\hat {\Psi }}({\vec {p}})}
=
∫
d
3
p
|
Ψ
^
(
p
)
|
2
=
1
{\displaystyle =\int d^{3}p|{\hat {\Psi }}(p)|^{2}=1}
¿Cómo se expresan los estados
|
p
→
⟩
{\displaystyle |{\vec {p}}\rangle }
en la base
{
|
x
→
⟩
}
{\displaystyle \{|{\vec {x}}\rangle \}}
y viceversa?
p
(
x
)
=
⟨
x
|
p
⟩
{\displaystyle p(x)=\langle x|p\rangle }
⟨
x
|
P
|
p
⟩
⟨
x
|
p
|
p
⟩
(la
p
saldría fuera)
{\displaystyle \langle x|P|p\rangle \langle x|p|p\rangle \quad {\text{(la }}p{\text{ saldría fuera)}}}
−
i
ℏ
d
p
(
x
)
d
x
=
p
p
(
x
)
{\displaystyle -i\hbar {\frac {dp(x)}{dx}}=pp(x)}
p
(
x
)
=
N
e
i
ℏ
p
x
{\displaystyle p(x)=Ne^{{\frac {i}{\hbar }}px}}
⟨
p
′
|
p
⟩
=
δ
(
p
′
−
p
)
{\displaystyle \langle p'|p\rangle =\delta (p'-p)}
∫
d
x
N
e
−
i
ℏ
p
′
x
N
e
i
ℏ
p
x
{\displaystyle \int dxNe^{-{\frac {i}{\hbar }}p'x}Ne^{{\frac {i}{\hbar }}p_{x}}}
=
∫
d
x
N
2
e
i
ℏ
(
p
−
p
′
)
x
{\displaystyle =\int dxN^{2}e^{{\frac {i}{\hbar }}(p-p')x}}
Como sabemos que
δ
(
p
)
=
1
2
π
∫
d
x
e
i
x
p
{\displaystyle \delta (p)={\frac {1}{2\pi }}\int dxe^{ixp}}
No se qué momentos bien definidos
p
(
x
)
=
⟨
x
|
p
⟩
{\displaystyle p(x)=\langle x|p\rangle }
p
(
x
)
=
1
2
π
ℏ
e
i
ℏ
p
x
{\displaystyle p(x)={\frac {1}{\sqrt {2\pi \hbar }}}e^{{\frac {i}{\hbar }}px}}
⟨
x
→
|
p
→
⟩
=
1
(
2
π
ℏ
)
3
/
2
e
i
ℏ
p
→
⋅
x
→
{\displaystyle \langle {\vec {x}}|{\vec {p}}\rangle ={\frac {1}{(2\pi \hbar )^{3/2}}}e^{{\frac {i}{\hbar }}{\vec {p}}\cdot {\vec {x}}}}
¿Función de onda de
|
x
→
⟩
{\displaystyle |{\vec {x}}\rangle }
en la representación de momentos?
⟨
p
|
x
⟩
=
⟨
x
|
p
⟩
∗
=
1
2
π
ℏ
e
i
ℏ
p
x
{\displaystyle \langle p|x\rangle =\langle x|p\rangle ^{*}={\frac {1}{2\pi \hbar }}e^{{\frac {i}{\hbar }}px}}
⟨
p
→
|
x
→
⟩
=
⟨
x
→
|
p
→
⟩
∗
{\displaystyle \langle {\vec {p}}|{\vec {x}}\rangle =\langle {\vec {x}}|{\vec {p}}\rangle ^{*}}
→
{\displaystyle \to }
¿Cómo se relacionan las funciones de onda
Ψ
(
x
)
{\displaystyle \Psi (x)}
y
Ψ
^
(
p
)
{\displaystyle {\hat {\Psi }}(p)}
?
Ψ
(
x
)
=
⟨
x
|
Ψ
(
x
)
⟩
{\displaystyle \Psi (x)=\langle x|\Psi (x)\rangle }
Ψ
^
(
p
)
=
⟨
p
|
x
⟩
=
∫
d
x
⟨
p
|
x
⟩
⟨
x
|
Ψ
⟩
=
∫
d
x
1
2
π
ℏ
e
−
i
ℏ
p
x
Ψ
(
x
)
{\displaystyle {\hat {\Psi }}(p)=\langle p|x\rangle =\int dx\langle p|x\rangle \langle x|\Psi \rangle =\int dx{\frac {1}{\sqrt {2\pi \hbar }}}e^{-{\frac {i}{\hbar }}px}\Psi (x)}
Ψ
^
(
p
)
=
F
[
Ψ
(
x
)
]
{\displaystyle {\hat {\Psi }}(p)={\mathcal {F}}[\Psi (x)]}
Ψ
(
x
→
)
=
⟨
x
→
|
Ψ
⟩
{\displaystyle \Psi ({\vec {x}})=\langle {\vec {x}}|\Psi \rangle }
Ψ
^
(
p
→
)
=
∫
d
x
1
(
2
π
ℏ
)
3
/
2
e
−
i
ℏ
x
→
⋅
p
→
Ψ
(
x
)
{\displaystyle {\hat {\Psi }}({\vec {p}})=\int dx{\frac {1}{(2\pi \hbar )^{3/2}}}e^{-{\frac {i}{\hbar }}{\vec {x}}\cdot {\vec {p}}}\Psi (x)}
F
−
1
[
Ψ
^
(
p
)
]
{\displaystyle {\mathcal {F}}^{-1}[{\hat {\Psi }}(p)]}
La transformada
F
{\displaystyle {\mathcal {F}}}
está definida para distribuciones
|
x
0
⟩
→
f
(
x
)
=
⟨
x
|
x
0
⟩
=
δ
(
x
−
x
0
)
{\displaystyle |x_{0}\rangle \rightarrow f(x)=\langle x|x_{0}\rangle =\delta (x-x_{0})}
¿Función de onda en representación de posiciones?
F
[
δ
(
x
−
x
0
)
]
=
f
^
(
p
)
=
1
2
π
ℏ
∫
d
x
e
−
i
ℏ
p
x
δ
(
x
−
x
0
)
{\displaystyle {\mathcal {F}}[\delta (x-x_{0})]={\hat {f}}(p)={\frac {1}{\sqrt {2\pi \hbar }}}\int dxe^{-{\frac {i}{\hbar }}px\delta (x-x_{0})}}
f
^
(
p
)
=
1
2
π
ℏ
e
−
i
ℏ
p
x
0
{\displaystyle {\hat {f}}(p)={\frac {1}{\sqrt {2\pi \hbar }}}e^{-{\frac {i}{\hbar }}px_{0}}}
Probabilidad de obtener P y obtener
p
±
Δ
p
2
{\displaystyle p\pm {\frac {\Delta p}{2}}}
∫
d
p
|
f
^
(
p
)
|
2
{\displaystyle \int dp|{\hat {f}}(p)|^{2}}
|
f
^
(
p
)
|
2
densidad de probilidad
{\displaystyle \left|{\hat {f}}(p)\right|^{2}\quad {\text{densidad de probilidad}}}
⇒
{\displaystyle \Rightarrow }
El módulo al cuadrado de la función de onda en la representación de momentos da el módulo de la densidad de probabilidad de encontrar la partícula.
|
f
^
(
p
)
|
2
(
p
ilocalizado)
{\displaystyle |{\hat {f}}(p)|^{2}\quad {\text{( }}p{\text{ ilocalizado)}}}
Deben cumplir la relación de incertidubre de Heissemberg
Δ
Ψ
X
⋅
Δ
Ψ
P
≥
ℏ
2
.
{\displaystyle \Delta _{\Psi }X\cdot \Delta _{\Psi }P\geq {\frac {\hbar }{2}}.}
¿Son estos vectores realmente estados físicos?\\
{
|
x
⟩
}
{\displaystyle \{|x\rangle \}}
,
{
|
x
⟩
}
{\displaystyle \{|x\rangle \}}
X
|
x
⟩
=
x
|
x
⟩
{\displaystyle X|x\rangle =x|x\rangle }
,
⟨
x
|
x
′
⟩
=
δ
(
x
−
x
′
)
{\displaystyle \langle x|x'\rangle =\delta (x-x')}
Realmente no, pues no son cuadrado sumables y su módulo no está bien definido. Los necesito únicamente como base de mi espacio de Hilbert, sin son estados físicos os lo dejo a vosotros.
Siempre se puede aproximar una gaussiana tanto como se quiere a la delta de Dirac.
⟹
{\displaystyle \Longrightarrow }
Para una gaussiana se obtiene que
Δ
Ψ
X
⋅
Δ
Ψ
P
=
ℏ
2
{\displaystyle \Delta _{\Psi }X\cdot \Delta _{\Psi }P={\frac {\hbar }{2}}}
"Es la mejor de las distribuciones"
Ψ
(
x
)
=
⟨
x
|
Ψ
⟩
=
1
π
1
/
4
d
e
i
k
x
−
x
2
2
d
2
{\displaystyle \Psi (x)=\langle x|\Psi \rangle ={\frac {1}{\pi ^{1/4}{\sqrt {d}}}}e^{ikx-{\frac {x^{2}}{2d^{2}}}}}
=
.
.
.
e
i
k
x
e
−
x
2
2
d
2
{\displaystyle =...e^{ikx}e^{-{\frac {x^{2}}{2d^{2}}}}}
Es una gaussiana....
⟹
{\displaystyle \Longrightarrow }
p
≈
k
ℏ
{\displaystyle p\approx k\hbar }
Δ
p
≈
ℏ
2
{\displaystyle \Delta p\approx {\frac {\hbar }{2}}}
x
≈
0
{\displaystyle x\approx 0}
Δ
x
≈
d
{\displaystyle \Delta x\approx d}