Matemáticas/Teoría de grupos/Clases laterales

Clases laterales editar

Uno de los resultados más destacables de la sección anterior es el hecho de que todo subgrupo de un grupo cíclico es igualmente cíclico. Este resultado fue muy sencillo de demostrar. Sin embargo, la tarea general de determinar explícitamente los subgrupos de un grupo cualquiera resulta mucho más complicada, y no podremos concluirla hasta mucho después. No obstante, es relativamente fácil encontrar la relación que existe entre el orden de un grupo y el orden de sus subgrupos, y a eso nos dedicaremos en esta sección.


Nos serán útiles los conceptos siguientes:


Definición 1.24: Sea   un grupo y   un subgrupo de  . Diremos que dos elementos   y   de   son congruentes por la izquierda módulo   si  . Este hecho lo representaremos por  . Similarmente,   y   serán congruentes por la derecha si  , y lo denotaremos por  .


Las relaciones de congruencia módulo un subgrupo   por la izquierda y por la derecha son relaciones de equivalencia. Probaremos esto para el caso de la relación  . Si   es un grupo y  , entonces  , pues  , luego   es reflexiva. Si  , entonces también  , pero  , de modo que   y   es simétrica. Si   y  , entonces también  , y como  , tenemos que  , y con ello   es transitiva. Esto prueba que la relación de congruencia módulo   es una relación de equivalencia.


Tenemos entonces que, si   es un grupo y  , las relaciones de congruencia   y   definen cada cual una partición del grupo   en clases de equivalencia. La clase de equivalencia de un elemento   de   por la relación de congruencia módulo   por la izquierda es el conjunto

 



Efectivamente, pues si   es uno de los elementos de la clase de equivalencia de   por esta relación de congruencia,  , es decir,   para cierto   de  , lo que equivale a que  . Similarmente se prueba que la clase de equivalencia de un elemento   de   por la relació de congruencia módulo   por la derecha es el conjunto

 .



Llamaremos clase lateral izquierda de   y clase lateral derecha de   según el subgrupo   a los conjuntos   y  , respectivamente. Al conjunto cociente de todas las clases laterales   (con  ) lo representaremos por  , mientras que al conjunto cociente de todas las clases laterales   lo representaremos por  

Tanto   como   tienen cardinal igual a  , pues, por ejemplo, la aplicación

 



es claramente biyectiva, luego  . Más aún, también es cierto que

 



La prueba de esto es que la aplicación   dada por

 



está bien definida (hecho que puede verificar el lector) y es biyectiva.


Definición 1.25: Sea   un grupo y   un subgrupo de  . Llamaremos índice de   en   al cardinal  . Lo representaremos por

 



Por todo lo anterior, tenemos que se cumple el siguiente hecho


Teorema 1.26 (Lagrange): Si   es un grupo finito y   es un subgrupo de  , entonces

 ,


así que el orden de todo subgrupo   de   es divisor del orden de  .


Demostración: Efectivamente, pues hemos visto que todas las clases laterales   tienen el mismo cardinal   (que es también el cardinal de cualquier clase  ), y si hay   de estas clases, entonces el orden de   es  .
 


En realidad el teorema anterior puede generalizarse para grupos no necesariamente finitos:


Teorema 1.27: Sea   un grupo y  . Entonces

 



Demostración: Tenemos que

 


donde   y   y las clases laterales   son disjuntas entre sí, al igual que lo son las clases  . Además, nótese que   y  . Tenemos pues que

  (1.3



Vamos a probar ahora que las clases laterales   son disjuntas, es decir, que   si y sólo si   y  . Supóngase pues que  , de modo que

 



para cierto   de  . Ya que  , tenemos que

 



para cierto   de  , luego  , y entonces  . Esto da paso a que sea

 



lo cual lleva claramente al hecho de que  , luego también   y así la unión (1.3)

es de clases mutuamente disjuntas, lo que implica que 
 



y el teorema queda demostrado.
 


Ahora el teorema 1.26 se convierte en un caso particular del teorema 1.27 cuando   es finito y tomando  .


Sea   un grupo y  . Se define

 



(Este conjunto puede no ser un grupo aún cuando   y   lo sean). Si, por ejemplo,   y  , entonces   es la clase lateral izquierda de   según el subgrupo  . Si   y  , notar que  .


Teorema 1.28 Si   y   son subgrupos finitos de un grupo  , entonces

 



Demostración: Si  , entonces   es también un subgrupo de  , aunque también lo es de ambos   y  , así que

  (1.4


siendo esta unión disjunta y  . Si multiplicamos (1.4)

por   y teniendo en cuenta que  , obtenemos
 



siendo esta unión igualmente disjunta (pues si no lo fuera tampoco lo sería (1.4)

). Por tanto,  , pero por el teorema de Lagrange  , de donde se sigue el resultado que se buscaba.