Matemáticas/Historia/Potenciación
Arquímedes, el padre de la notación científica. El primer intento de representar números demasiado grandes fue emprendido por el matemático y filósofo griego Arquímedes, descrito en su obra El contador de Arena en el siglo III a. C. Ideó un sistema de representación numérica para estimar cuántos granos de arena existían en el universo. El número estimado por él era de 1063 granos.
Nótese la coincidencia del exponente con el número de casilleros del ajedrez sabiendo que para valores positivos, el exponente es n-1 donde n es el número de dígitos, siendo la última casilla la Nº 64 el exponente sería 63 (hay un antiguo cuento del tablero de ajedrez en que al último casillero le corresponde -2 elevado a la 63- granos). A través de la notación científica fue concebido el modelo de representación de los números reales mediante coma flotante. Esa idea fue propuesta por Leonardo Torres Quevedo (1914), Konrad Zuse (1936) y George Robert Stibitz (1939).
Aunque no es 100 por ciento seguro, parece que la idea de elevar al cuadrado o al cubo se remonta hasta el tiempo de los babilónicos. Babilonia era parte de Mesopotamia en la zona que ahora consideramos como Irak. La primera mención conocida de Babilonia se encuentra en una roca que data del siglo XXIII a.C. Y lo cierto es que aún así ellos estaban lidiando con el concepto de los exponentes, a pesar de que su sistema de numeración (el sumerio, que ahora es una lengua muerta) utilizaba símbolos para descomponer fórmulas matemáticas. Curiosamente, no sabían qué hacer con el número 0, de modo que lo delineaban como un espacio entre los símbolos.
La palabra en sí misma proviene del latín "expo", que significa "fuera de", y "ponere", que significa "celular". Si bien la palabra exponente pasó a significar cosas diferentes, el primer uso moderno registrado de exponente en matemáticas fue en un libro llamado "Integra Arithemetica", escrito en 1544 por el autor inglés y matemático Michael Stifel. Pero él simplemente estaba trabajando con una base de dos, de modo que, por ejemplo, el exponente 3 significaba que la cantidad de números 2 que tendrías que multiplicar para obtener 8. Lo que se vería así: 2 ³ = 8. El método de Stifel se diría que es un poco retrógrado en comparación con la forma en que pensamos acerca del tema hoy. Él diría que "el 3 es la configuración del 8". Pero hoy en día, nos referimos a eso simplemente como una ecuación de 2 al cubo. Hay que recordar que él estaba trabajando exclusivamente con una base o un factor de 2 y traduciendo del latín un poco más literalmente de lo que hacemos actualmente.