Matemáticas/Historia/División

La barra horizontal de las fracciones (de origen árabe) ya era usada por Fibonacci en el siglo XIII, aunque no se generalizó hasta el siglo XVI. Es, desde luego, la forma más satisfactoria, pues no solo indica la operación sino que en el caso de que sean varias las operaciones a realizar establece el orden de prioridad entre ellas (digamos que además de signo es paréntesis). La barra oblicua /, variante de la anterior para escribir en una sola línea, fue introducida por De Morgan en 1845.

En 1659 el suizo Johann Heinrich Rahn inventó para la división el signo ¸, que resulta bastante gráfico una vez que la barra de fracción es norma general. No tuvo mucho éxito en su país, Suiza, ni en la Europa continental, pero sí en Gran Bretaña y los Estados Unidos.

Los dos puntos se deben a Leibniz (1684), que los aconsejaba para aquellos casos en los que se quisiese escribir la división en una sola línea y la notación con raya de fracción no fuese por tanto adecuada. Este signo mantiene el parentesco de la división con la multiplicación, para la que Leibniz usaba un punto.

En cuanto al gnomon o ángulo que utilizamos para separar dividendo, divisor y cociente en la división larga no se dispone de una información precisa. Boyer, en su Historia de la matemática, p.282, dice: "Los árabes, y a través de ellos más tarde los europeos, adoptaron la mayor parte de sus artificios aritméticos de los hindúes, y por tanto es muy probable que también provenga de la India el método de "división larga" conocido como el "método de la galera", por su semejanza con un barco con las velas desplegadas." Pues bien: en dicho "método de la galera" se utilizaba un ángulo parecido al que se usa en la actualidad para separar el divisor de los otros números.