Manual de Ingeniería Informática/Lógica Matemática

TODO:Arreglar todo esto

Cálculo Proposicional

editar

Una proposición es una frase o sentencia declarativa que es verdadera o falsa pero no ambas cosas a la vez. El cálculo proposicional se encarga del estudio de las relaciones lógicas entre proposiciones.

Los conectivos lógicos se combinan con las proposiciones simples para formar nuevas proposiciones, que llamaremos proposiciones compuestas y representaremos con letras mayúsculas. Los conectivos lógicos básicos son:

  • Negación:  
    •  , no  
  • Disyunción:  
    •  ,   ó  
  • Conjunción:  
    •  ,   y  
  • Implicación Condicional:  
    •  ,   implica  
  • Implicación Bicondicional:  
    •  ,   si y sólo si  

La proposición   es la recíproca de  , mientras que la proposición   es la contrarrecíproca de  .

Como hemos dicho, las proposiciones pueden tomar dos valores, verdadero o falso, que representaremos respectivamente con los números 1 y 0. Por tanto, cuando digamos que una proposición toma valor 1 estaremos diciendo que es verdadera.

El valor de verdad de una proposición compuesta queda determinado por los valores de las proposiciones simples que la forman. Las tablas de verdad nos indican los valores de verdad de una proposición para cada posible combinación de los valores de las proposiciones simples (variables) que la la forman.

TODO: ejemplo de tabla de verdad

Una tautología es una proposición compuesta que toma valor 1 para cualquier combinación de los valores de sus variables. Lo contrario de una tautología es una contradicción, proposición compuesta que siempre es falsa.

TODO: ejemplo de tautología

Equivalencia Lógica

editar

Diremos que dos proposiciones P y Q son lógicamente equivalentes si   es una tautología, es decir, si las tablas de verdad de P y Q son iguales.

Hay equivalencias lógicas de uso tan frecuente que poseen nombre propio

Leyes Lógicas

editar
  • Doble negación
  • Conmutativas
  • Asociativas
  • Distributivas
  • Leyes de DeMorgan
  • De idempotencia
  • De identidad
  • De dominación
  • Inversas
  • De absorción

Reglas de Sustitución

editar
  • Sea P una tautología y q una variable de P. Si sustituimos cada aparición de q por cualquier otra proposición Q entonces la proposición resultante es también una tautología.
  • Sea P una tautología y Q una proposición que aparece en P. Si reemplazamos Q por una proposición lógicamente a Q obtendremos una nueva proposición lógicamente equivalente a P.
  • Cualquier proposición es lógicamente equivalente a otra que contiene solamente los conectivos lógicos -, v,and.

Dualidad

editar

Llamaremos dual de una proposición que contiene sólo los conectivos lógicos not ,and or a la proposición resultante de sustituir and por or, or por and y 1 por 0.

Principio de Dualidad: si P y Q son dos proposiciones lógicamente equivalentes que contienen sólo los conectiv, y escribiremos Ps lógicos not, or, and entonces los duales de ambas proposiciones también son equivalentes entre sí.

Implicación Lógica. Reglas de Inferencia

editar

Dadas dos proposiciones P y Q diremos que P implica lógicamente Q , y escribiremos   si   es una tautología.

Si P es falso, entonces la proposición   es verdadera independientemente del valor de Q. Por tanto,   si los valores de las variables que hacen a P verdadero también hacen verdadero a Q. De manera equivalente   significa que P y Q no tienen nunca de manera simultánea los valores de verdad 1 y 0 respectivamente.

Es importante no confundir   con  . Ésta última es una proposición que puede o no ser verdadera, mientras que la primera,  , es una relación que nos indica que   es una tautología.

Implicaciones Lógicas

editar
  • Modus Ponens:  
  • Modus Tollens:  
  • Reducción al Absurdo:  
  • Silogismo Disyuntivo:  
  • Silogismo o Transitividad de  :  
  • Ampliación disyuntiva:  
  • Simplificación Conjuntiva: