Mantenimiento y Montaje de Equipos Informáticos/Tema 3/Texto completo

TEMA 3


Índice del Tema 3
18:57 25 sep 2023


MME: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Introducción editar

En el tema 3, conocerás y entenderás los diferentes tipos de almacenamiento definitivo de información, sus ventajas e inconvenientes. Es importante:

  • Entender cómo se magnetiza la información.
  • Saber los componentes y funciones de los discos duros.
  • Distinguir entre la estructura lógica y física de los discos duros.
  • Entender el funcionamiento de los CD, DVD y similares.
  • Distinguir los diferentes tipos de memorias sólidas y sus funciones.
  • Entender los diagramas del tema.

Vocabulario editar

  • Acceso aleatorio es el acceso a un dato directamente, sin un coste extra por posición. Por analogía, sería como elegir una manzana de un cajón.
  • Acceso secuencial significa que un grupo de elementos es accedido en un predeterminado orden secuencial, uno detrás de otro. Por analogía, sería como avanzar una película para buscar un fotograma determinado de ella.
  • Buffer es una ubicación de la memoria en un disco, reservada para el almacenamiento temporal de información digital, mientras que espera ser procesada.
  • Cifrar es hacer ininteligibles a intrusos (lectores no autorizados) los mensajes o ficheros. Hay cierta confusión con «encriptar» pero esta palabra es un anglicismo, es completamente preferible el uso de «cifrar».
  • Policarbonato es un grupo de termoplásticos fácil de trabajar, moldear, y son utilizados ampliamente en la fabricación de CD y DVD.
  • Pulgada = 2.54 cm
  • RPM son las Revoluciones Por Minuto, es una unidad de frecuencia.
  • Desfragmentación es el proceso mediante el cual se acomodan los archivos de un disco de tal manera que cada uno quede en un área continua y no queden espacios sin usar entre ellos. Solo se utiliza en Windows.

Almacenamiento magnético editar

Almacenamiento magnético es una técnica que consiste en la aplicación de campos magnéticos a ciertos materiales capaces de reaccionar frente a esta influencia y orientarse en unas determinadas posiciones manteniéndolas hasta después de dejar de aplicar el campo magnético. Ejemplo: disco duro, cinta magnética.

Disco Duro Magnético editar

Vídeo de funcionamiento interno de un disco
 
Disco duro sin desmontar

Un disco duro (en inglés Hard Disk Drive, HDD) es un dispositivo de almacenamiento de datos no volátil que emplea un sistema de grabación magnética para almacenar datos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada no herméticamente. Sobre cada plato, y en cada una de sus caras, se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos.

Tecnología editar

 
 
Vista de un peine con 3 brazos, si se amplía se pueden observar las 6 cabezas (dos por brazo)

La grabación perpendicular permite mayores densidades de almacenamiento alineando los polos de los elementos magnéticos (que representan bits de información), perpendicularmente a la superficie del disco de grabación, como se muestra en el dibujo. Alinear los bits de esta forma ocupa menos espacio del necesario que si se hace longitudinalmente, por lo que pueden ser agrupados, incrementando el número de elementos magnéticos que pueden ser almacenados en una área dada.

El principal reto a la hora de diseñar medios de almacenamiento magnéticos es mantener la magnetización del medio (que es como se almacena la información) a pesar de las fluctuaciones térmicas. Si la energía térmica disponible es demasiado alta en un punto determinado, habrá energía suficiente para eliminar esta magnetización, con lo que la información almacenada en dicho punto se perderá. Ya que la energía necesaria para eliminar la magnetización de una determinada región magnética es proporcional al tamaño de dicha región (cuanto mayor sea más estable y por tanto más inmune a la temperatura), hay un tamaño mínimo para estas regiones magnéticas a una determinada temperatura. Si el tamaño cae por debajo de este mínimo, la región podría ser desmagnetizada en cualquier momento por esta energía térmica disponible. La grabación perpendicular mantiene el mismo tamaño de región que en el estándar pero organiza las regiones magnéticas de una forma más eficiente.

Generalmente, los discos duros deben trabajar desde los 37 oC hasta los 46 oC; a temperaturas fuera de este rango, se va degradando el disco; hasta los 20oC o a partir de 60 oC la información se pierde (habría que consultarlo en la ficha técnica del fabricante del disco). Para un uso intensivo del disco (clonaciones, usos empresariales, copias de seguridad, etc) se debería refrigerar según un estudio en Google

Otras consideraciones a tener en cuenta para su durabilidad es el nivelado del disco y evitar las vibraciones.

Estructura física editar

 
Componentes de un disco duro. De izquierda a derecha, fila superior: tapa, carcasa, plato, eje; fila inferior: espuma aislante, circuito impreso, cabezal de lectura / escritura, actuador e imán, tornillos.
 
un peine, 3 brazos, 6 cabezas, 3 platos

Dentro de un disco duro hay uno o varios discos (de aluminio o cristal) concéntricos llamados platos (normalmente entre 2 y 4), y que giran todos a la vez sobre el mismo eje, al que están unidos. El peine está formado por un conjunto de brazos paralelos a los platos, alineados verticalmente ( en forma de peine) y que también se desplazan de forma simultánea, en cuya punta están las cabezas de lectura/escritura. Por norma general, hay una cabeza de lectura/escritura para cada superficie de cada plato. Los cabezales se mueven hacia el interior o el exterior de los platos, lo cual combinado con la rotación de los mismos permite que los cabezales puedan alcanzar cualquier posición de la superficie de los platos.

 
Cilindro, Cabeza y Sector GEOMÉTRICO
 
(A) Pista (color rojo), (B) Sector GEOMÉTRICO (color azul) , (C) Sector (color morado), (D) Clúster

Es necesaria una cabeza de lectura/escritura para cada cara. Si observas el dibujo Cilindro-Cabeza-Sector de la izquierda, a primera vista se ven 4 brazos, uno para cada plato. Cada brazo tiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros), debido a una finísima película de aire generada por el plato al girar. Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 revoluciones por minuto se mueve a 129 km/h).

Vídeos del funcionamiento de un disco magnético:
Por dentro
Fabricación
Ejemplo

Direccionamiento editar

Hay varios conceptos para referirse a zonas del disco:

  • Plato: cada uno de los discos que hay dentro del disco duro.
  • Cara: cada uno de los dos lados de un plato
  • Cabeza: número de cabezales.
  • Pistas: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
  • Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
  • Sector: cada una de las divisiones de una pista. Todos tienen el mismo tamaño. El tamaño estándar actual 4096 bytes.[1]
  • Clúster: es un conjunto contiguo de sectores de un disco.
  • Sector geométrico: es un conjunto de sectores de pistas continuas (si el plato fuera una pizza, el sector geométrico sería una porción)

El LBA (direccionamiento lógico de bloques) consiste en dividir el disco entero en sectores y asignar a cada uno un único número. Este direccionamiento es el que actualmente se usa.

Problemas típicos editar

  • Calcule la capacidad total (tamaño) de un disco duro con las siguientes características: 16 cabezas, 1000 cilindros, 128 sectores/pista y 4000 bytes/sector.
Si tiene 16 cabezas, tiene 16 caras (8 platos), cada cara tiene 1000 pistas (que conforman los 1000 cilindros), por tanto:
número de pistas totales  en todo el disco duro (16 caras).
Cada pista contiene 128 sectores, por tanto:
total de sectores en el disco duro 
Cada sector contiene 4000 bytes, por tanto,
total de bytes en el disco duro 

 

Características editar

 
Con la tecnología NCQ se accede a los sectores con un menor número de rotaciones, y por tanto, se obtiene un menor tiempo de latencia medio

Las características que se deben tener en cuenta en un disco duro son:

  • Tiempo medio de búsqueda (milisegundos): Tiempo medio que tarda la cabeza en situarse en la pista deseada; es la mitad del tiempo empleado por la cabeza en ir desde la pista más periférica hasta la más central del disco.

  • Velocidad de rotación (RPM): Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
  • Latencia media (milisegundos): Tiempo medio que tarda la cabeza en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
  • Tiempo medio de acceso(milisegundos): es la suma del Tiempo medio de búsqueda (situarse en la pista) + la Latencia media (situarse en el sector).
  • Tasa de transferencia (MB/s): Velocidad a la que el disco puede transferir la información a la computadora una vez que el cabezal está situado en la pista y sector correctos. Puede ser velocidad sostenida o de pico (a través del buffer). Tipos:
    • Tasa de transferencia de lectura, en este caso se trata de la velocidad a la que transfiere un fichero desde el disco magnético a cualquier programa. Por ejemplo: ver una película alojada en un disco magnético.
    • Tasa de transferencia de escritura, en este caso se trata de la velocidad a la que transfiere un fichero desde cualquier programa al disco magnético. En este caso, suele ser más baja puesto que después de escribir los datos, se suelen comprobar si están bien escritos. Por ejemplo: al guardar datos desde el Writer u otro programa al disco magnético.
  • Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información. Depende de la cantidad de información que se quiere leer o escribir.
  • Buffer: Es una memoria de tipo electrónico dentro del disco duro que almacena los datos recién leídos y/o escritos, reduce el uso del disco y las lecturas o escrituras repetitivas de datos y favorece la rapidez de acceso a los datos. Se puede aplicar la tecnología NCQ que permite a la unidad determinar el orden óptimo en que se debe recuperar las solicitudes pendientes. Esto puede, como en la imagen, permitir que la unidad cumpla con todas las solicitudes en un menor número de rotaciones y por lo tanto en menos tiempo.
  • Interfaz: Medio de comunicación entre el disco duro y la computadora. Según la interfaz y su versión, puede variar mucho la tasa de transferencia máxima del interfaz. Puede ser IDE/ATA, SCSI, SATA, USB, Firewire, Serial Attached SCSI.

LA TASA MÁXIMA DE TRANSFERENCIA SOSTENIDA SE SUELE CONFUNDIR CON LA TASA MÁXIMA DE TRANSFERENCIA DE LA INTERFAZ (solo la electrónica del disco) muchos comerciantes incluyen esta tasa (del interfaz) en lugar de la la tasa de transferencia sostenida del disco (la real).

Problemas típicos editar

Se utiliza el Sistema Internacional de Unidades (o SI) pues es usado en las especificaciones de las fichas técnicas de discos de almacenamiento.

  • Cambio de unidades
Tenemos una interface de disco a 6Gb/s. ¿Cuántos MB/s serán?
Como 1 byte = 8 bits, entonces 1 gigabit(Gb) es 1 gigabyte(GB) / 8; resultando 6Gb/s = 0.75GB/s.
Con regla de tres:
De bits a Bytes
 
 
Como 1000MB = 1GB, entonces 0.75 GigaBytes(GB) es 0.75 * 1000 MegaBytes (MB); resultando 6Gb/s = 750 MB/s
De GB a MB
 
 


  • Tasas de transferencia y tamaños de ficheros
Tenemos un fichero de 1 GB en la memoria RAM y el disco tiene una tasa de transferencia sostenida de 100 MB/s de escritura en disco, 150 MB/s de lectura en disco, una tasa de transferencia de la interfaz de 2GB/s y Tiempo Búsqueda 2ms . ¿Cuánto tiempo tardará en guardarlo (transferirlo) en el disco?
Como 1000MB = 1GB, el fichero tendrá un tamaño de 1 * 1000 = 1000MB
Por tanto solo nos queda saber el tiempo, velocidad transferencia = tamaño fichero / tiempo; por tanto, 100 = 1000 / tiempo; despejando vemos que tiempo = 1000 / 100 = 10 segundos(s)
Con regla de tres:
 
 


Tenemos un fichero de 1 GB en el disco que queremos volcar en la memoria RAM, tiene una tasa de transferencia sostenida de 100 MB/s de escritura en disco, 150 MB/s de lectura en disco y una tasa de transferencia de la interfaz de 2GB/s . ¿Cuánto tiempo tardará en transferirlo a la memoria RAM del computador?
Como 1000MB = 1GB, el fichero tendrá un tamaño de 1 * 1000 = 1000MB
Por tanto solo nos queda saber el tiempo, velocidad transferencia = tamaño fichero / tiempo; por tanto, 150 = 1000/tiempo; despejando vemos que tiempo = 1000/150 = 6.66 segundos(s)
Con regla de tres:
 
 
  • Cambio de unidades
Tenemos un disco que gira a 22500 revoluciones en 180 segundos. ¿Cuál es su velocidad de rotación en RPM?
 
 
  • Cálculo de latencia media
Tenemos disco que gira a 7500RPM. ¿Cuál es su latencia media?
Primero: calculamos el tiempo que tardará una vuelta:
 
 
Segundo: calculamos la latencia media:
 
  • Cálculo del tiempo de búsqueda medio
Tenemos disco cuya cabeza tarda 0.002 segundos en ir de la pista más alejada a la más cercana al eje. ¿Cuál es su tiempo medio de búsqueda?
Calculamos el tiempo que tardará una vuelta:
 
  • Cálculo del Tiempo de Acceso
De los problemas anteriores, extrae el tiempo medio de acceso si fuera el mismo disco
Simplemente se suman los tiempos medios:
Tiempo Medio Acceso = Latencia Media + Tiempo Medio Búsqueda
Tiempo Medio Acceso = 0.004 + 0.001 s = 0.005 s = 5 ms;


  • Cálculo del Tiempo Total de la transferencia
De los problemas anteriores, extrae el total de la transferencia del archivo
Simplemente se suman los tiempos medios:
Tiempo Transferencia Total = Tiempo Transferencia Fichero + Latencia Media + Tiempo Medio Búsqueda = 10 + 0.004 + 0.001 s = 10.005 s;

Factores de Forma más usados editar

El "factor de forma" de los discos duros, heredó sus dimensiones de las disqueteras (existen dos tipos). Pueden ser montados en los mismos chasis.

  • 3,5 pulgadas es el más usado para las cajas de computadores tipo y servidores actuales.
  • 2,5 pulgadas es frecuentemente usado por los discos duros de los portátiles. Hay que tener cuidado con la altura de los discos pues en algunos portátiles no caben. Se recomendaría leer en el libro de instrucciones las dimensiones exactas que soporta el portátil o quitar el disco instalado y medir su altura.

Web comparativa de rendimientos de discos duros magnéticos editar

En la web Pass Mark, podemos ver los rendimientos de los discos duros magnéticos de distinto factor de forma. Miles de usuarios mediante aportaciones desinteresadas con un software de prueba colaboran en el test.


Otra web UserBenchmark realiza una comparativa similar

Resulta interesante consultarla antes de adquirir un disco duro, aunque conviene consultar la fecha. Hay que tener en cuenta que no figuran todos los modelos.

Fabricantes de discos duros editar

  • Western Digital que compró la división de almacenamiento de Hitachi (2012) y Samsung (2011), HGST (2015), Seagate, Quantum Corp., Maxtor.
  • Toshiba que compró la división de almacenamiento de Fujitsu.

Almacenamiento óptico editar

El almacenamiento óptico se trata de aquellos dispositivos que son capaces de guardar datos por medio de un rayo láser en su superficie plástica, ya que se almacenan por medio de ranuras microscópicas quemadas. La información queda grabada en la superficie de manera física, por lo que solo el calor (puede producir deformaciones en la superficie del disco) y las ralladuras pueden producir la pérdida de los datos, en cambio es inmune a los campos magnéticos y la humedad.


Sistema de archivos editar

Los soportes ópticos siguen el sistema de archivos UDF (universal disk format o formato de disco universal) y Joliet. Se adoptó este sistema de archivos para reemplazar al estándar ISO 9660, y su principal uso es la grabación o regrabación de discos.

Sistema de lectura/escritura editar

La lectura de un soporte óptico consiste en la conversión de los lands y pits a una información digital (ceros y unos). El elemento fundamental para la lectura de un soporte óptico es un láser de baja potencia, que emite radiación y que se enfoca hacia la parte inferior del CD. La luz atraviesa la capa de policarbonato e incide sobre la capa de aluminio. Si el haz incide sobre un hueco (pit), el porcentaje de luz reflejada es muy pequeño. Por el contrario, si el haz incide sobre una zona plana (land), un gran porcentaje de luz es reflejada. La radiación luminosa reflejada se dirige hacia un fotodetector que, en función de la intensidad de la luz recibida, puede detectar fácilmente si se ha enfocado un land o un pit.

Un soporte óptico no contiene pistas concéntricas, como ocurría en los discos magnéticos. En cambio, el soporte óptico presenta una sola pista, que se dispone en forma de espiral, cubriendo toda el área de datos. La espiral comienza en la parte interior del disco, justo después del área interior. Esto se hace así para permitir recortar el radio del soporte óptico y poder obtener versiones más pequeñas.

Vídeo de funcionamiento muy didáctico

Unidad de DVD editar

El DVD es un disco de almacenamiento de datos cuyo estándar surgió en 1995. Sus siglas corresponden con Digital Versatile Disc en inglés («disco versátil digital» traducido al español). En sus inicios, la v intermedia hacía referencia a video (digital videodisk), debido a su desarrollo como reemplazo del formato VHS para la distribución de vídeo a los hogares.

Unidad de DVD: el nombre de este dispositivo hace referencia a la multitud de maneras en las que se almacenan los datos: DVD-ROM (dispositivo de lectura únicamente), DVD-R y DVD+R (solo pueden escribirse una vez), DVD-RW y DVD+RW (permiten grabar y luego borrar). También difieren en la capacidad de almacenamiento de cada uno de los tipos.

Los DVD se dividen en dos categorías: los de capa simple y los de doble capa. Además el disco puede tener una o dos caras, y una o dos capas de datos por cada cara; el número de caras y capas determina la capacidad del disco. Los formatos de dos caras apenas se utilizan fuera del ámbito de DVD-Video.

Los DVD de capa simple pueden guardar hasta 4,7 gigabytes (se lo conoce como DVD-5). Emplea un láser de lectura con una longitud de onda de 650 nm (en el caso de los CD, es de 780 nm) y una apertura numérica de 0,6 (frente a los 0,45 del CD), la resolución de lectura se incrementa en un factor de 1,65. Esto es aplicable en dos dimensiones.

Tipos de DVD editar

 
comparativa de surcos en CD DVD HDDVD BD

Los DVD se pueden clasificar:

  • Según su contenido:
    • DVD-Video: películas (vídeo y audio).
    • DVD-Audio: audio de alta fidelidad. Por ejemplo: 24 bits por muestra, una velocidad de muestreo de 48 000 Hz y un rango dinámico de 144 dB.[cita requerida]
    • DVD-Data: todo tipo de datos.
  • Según su capacidad de regrabado (La mayoría de las grabadoras de DVD nuevas pueden grabar en ambos formatos y llevan ambos logotipos, «+RW» y «DVD-R/RW»):
    • DVD-ROM: solo lectura, manufacturado con prensa.
    • DVD-R y DVD+R: grabable una sola vez. La diferencia entre los tipos +R y -R radica en la forma de grabación y de codificación de la información. En los +R los agujeros son 1 lógicos mientras que en los –R los agujeros son 0 lógicos.
    • DVD-RW y DVD+RW: regrabable.
      • DVD-RAM: regrabable de acceso aleatorio. Lleva a cabo una comprobación de la integridad de los datos siempre activa tras completar la escritura.
      • DVD+R DL: grabable una sola vez de doble capa.
  • El DVD-ROM almacena desde 4,7 GB hasta 17 GB. Según su número de capas o caras:
    • DVD-5: una cara, capa simple; 4,7 GB o 4,38 GiB. Discos DVD±R/RW.
    • DVD-9: una cara, capa doble; 8,5 GB o 7,92 GiB. Discos DVD+R DL. La grabación de doble capa permite a los discos DVD-R y los DVD+RW almacenar significativamente más datos, hasta 8,5 GB por disco, comparado con los 4,7 GB que permiten los discos de una capa. Su precio es comparable con las unidades de una capa, aunque el medio continúa siendo considerablemente más caro.
    • DVD-10: dos caras, capa simple en ambas; 9,4 GB o 8,75 GiB. Discos DVD±R/RW.
    • DVD-18: dos caras, capa doble en ambas; 17,1 GB o 15,9 GiB. Discos DVD+R.

Blu-ray disc, también conocido como Blu-ray o BD editar

El Blu-ray es un formato de disco óptico de nueva generación, empleado para vídeo de alta definición y con una capacidad de almacenamiento de datos de alta densidad mayor que la del DVD.

El disco Blu-ray tiene 12 cm de diámetro al igual que el CD y el DVD. Guardaba 25 GB por capa, por lo que Sony y Panasonic desarrollaron un nuevo índice de evaluación (i-MLSE) que permitiría ampliar un 33% la cantidad de datos almacenados, desde 25 a 33,4 GB por capa.

Funcionamiento editar

El disco Blu-ray hace uso de un rayo láser de color azul con una longitud de onda de 405 nanómetros, a diferencia del láser rojo utilizado en lectores de DVD, que tiene una longitud de onda de 650 nanómetros. Esto, junto con otros avances tecnológicos, permite almacenar sustancialmente más información que el DVD en un disco de las mismas dimensiones y aspecto externo. Blu-ray obtiene su nombre del color azul del rayo láser (blue ray significa ‘rayo azul’). La letra e de la palabra original blue fue eliminada debido a que, en algunos países, no se puede registrar para un nombre comercial una palabra común.

Vídeo de fabricación de un Blue-ray y DVD HD

Almacenamiento electrónico editar

El almacenamiento electrónico se trata de aquellos dispositivos que son capaces de guardar datos utilizando dispositivos electrónicos, generalmente chips del tipo NAND u otra tecnología. Al dejar de suministrar corriente eléctrica, sigue guardada la información.

Parámetros IOPS editar

Las operaciones de entrada/salida por segundo (IOPS, operaciones de entrada y salida por segundo) es una medida de rendimiento operaciones de entrada/salida utilizada para caracterizar dispositivos de almacenamiento en unidades de estado sólido (SSD).

Las características de rendimiento más comunes medidas son operaciones secuenciales y aleatorias. Las operaciones secuenciales acceden a ubicaciones en el dispositivo de almacenamiento de manera contigua y generalmente están asociadas con grandes tamaños de transferencia de datos (ficheros multimedia). Las operaciones aleatorias acceden a ubicaciones en el dispositivo de almacenamiento de manera no contigua y generalmente están asociadas con pequeños tamaños de transferencia de datos (ficheros ejecutables, configuración, Sistema Operativos).

IOPS puede considerarse análogo a las "revoluciones por minuto" de un motor de un disco duro, es decir, un motor capaz de girar a 10,000 RPM obtendría alrededor de 142 a 151 IOPS.

Las características de rendimiento más comunes son las siguientes:

Medida Descripción
Total IOPS Número total de operaciones E/S (combinación de pruebas de lectura y escritura en las unidades)
Random Read IOPS Número medio de lecturas aleatorias por segundo
Random Write IOPS Número medio de escrituras aleatorias por segundo
Sequential Read IOPS Número medio de lecturas secuenciales por segundo (normalmente mayor que Random Read IOPS)
Sequential Write IOPS Número medio de escrituras secuenciales por segundo (normalmente mayor que Random Write IOPS)

La medida de IOPS secuenciales (especialmente cuando se usa un tamaño de bloque grande) generalmente indican la tasa máxima de transferencia sostenida que puede manejar el dispositivo de almacenamiento.


Tecnología NAND Flash editar

Casi la totalidad de los fabricantes comercializan sus SSD con memorias no volátiles NAND flash para desarrollar un dispositivo no sólo veloz y con una vasta capacidad, sino también robusto y a la vez lo más pequeño posible tanto para el mercado de consumo como el profesional. Al ser memorias no volátiles, no requieren ningún tipo de alimentación constante ni pilas para no perder los datos almacenados, incluso en apagones repentinos.

Vídeo de fabricación de un disco de estado Sólido (SSD)

Estructura física[2] editar

Celdas editar

 
Operaciones en una celda NAND: lectura, escritura y borrado

Las memorias flash NAND almacenan los datos en muchas celdas NAND mediante transistores de puerta flotante similares a un MOSFET.

Una sola celda flash NAND almacena un solo bit de datos en una unidad de estado sólido y continuará almacenando ese estado incluso después de que se haya eliminado la corriente eléctrica. Por tanto, al eliminar la corriente eléctrica de alimentación del dispositivo NAND no afecta el estado de la puerta flotante, por lo que mantiene los datos.

Funcionamiento editar

La carga eléctrica de una celda NAND se almacena en la puerta flotante que está aislada arriba y abajo por capas aislantes. Los electrones de la capa flotante son atraídos en el sentido en el que se aplica la tensión en las puertas del transistor. En una celda se pueden realizar las siguientes acciones:

  • Escribir: al aplicar un mayor voltaje a la celda en la puerta de control, los electrones se mueven desde el sustrato de silicio a la puerta flotante. El sustrato se comporta como aislante al no tener electrones y no fluye corriente entre la puerta fuente y la puerta de drenado.
  • Borrar: se aplica un mayor voltaje en el sustrato (sentido contrario) y los electrones van de la puerta flotante al sustrato. Por tanto el sustrato se comporta como conductor y fluye corriente entre la puerta fuente y la puerta de drenado.
  • Leer estado: se aplica un pequeño voltaje a la puerta de control y se mide la corriente que fluye entre la fuente y el drenaje. Si no hay flujo de corriente, significa que la puerta flotante está cargada (binario 0). Si hay flujo de corriente, la puerta flotante no está cargada (binario 1),

Degradación de la celda: La actividad eléctrica de borrado desgasta la capa aislante de la celda con el paso del tiempo. Por lo tanto, cada celda tiene un tiempo de vida finito, medido en ciclos de programado y borrado (P/E cycles) y el número de bits que almacena cada celda. Además el almacenamiento NAND requiere de unos procesos adicionales que realiza la controladora NVMe: detectar bloques defectuosos, recolector de basura y nivelación del desgaste de las celdas.

Tipos Celdas NAND[3] editar

 
NAND-tipos
  • SLC (Single Level Cell). Cuando se detecta cualquier corriente entre la fuente y el drenaje, se puede saber que la celda está escrita o no. Por lo tanto tendrá dos estados (escritos o borrados) y se representa con un bit.
  • MLC (Multi Level Cell). La celda NAND puede cargar en la puerta flotante cuatro niveles diferentes de carga de electrones. Por lo tanto tendrá cuatro estados y se representan con dos bits.
  • TLC (Tri Level Cell). La celda NAND puede cargar en la puerta flotante ocho niveles diferentes de carga de electrones. Por lo tanto tendrá ocho estados y se representan con tres bits.
  • QLC (Quad Level Cells). La celda NAND puede cargar en la puerta flotante dieciséis niveles diferentes de carga de electrones. Por lo tanto tendrá dieciséis estados y se representan con cuatro bits.
  • PLC (5 bits por celda).. en desarrollo.

La carga máxima de cada celda en su puerta flotante es aproximadamente el mismo. Por lo tanto, las células SLC tienen mayor holgura entre sus estados y más seguridad. Debido a esto, SLC NAND puede soportar temperaturas extremas y otros efectos adversos mucho mejor que los otros tipos. Además, los tipos etiquetados como e (enterprise) como por ejemplo eMLC soportan menores tasas de error de las celdas.


Características de los tipos de celda:

Tipo Bits por celda Máximo ciclos borrado (PE) Tiempo lectura Tiempo escritura Tiempo borrado Fiabilidad Coste/Byte Uso
SLC 1 100.000 0,025ms 0,2 a 0,3 ms 1,5 a 2 ms la mayor el mayor industrial
MLC 2 10.000 (30.000 eMLC) 0,050ms 0,6 a 0,9 ms 3 ms alto alta empresas
TLC 3 5.000 0,075ms 0,9 a 1,3 ms 3 a 4,5 ms baja menor perfil medio/alto usuarios
QLC 4 1.000 0,100ms 1,5 ms 6 ms muy baja el menor perfil medio/bajo usuarios

Arquitectura editar

Páginas editar

 
Estructura lógica de una página NAND

Una página la forman una matriz de celdas unidas. Cada celda se une a la siguiente para formar una fila de la matriz o cadena de celdas. Las filas se unen a través de una sola columna para formar la matriz. Esta matriz es la página y puede almacenar entre 2 a 16 KiB, según cada fabricante.

El acceso a los valores de cada celda no es soportado. Siempre se accede a la página y,

  • se lee el contenido almacenado en todas las celdas en ella de una vez.
  • se escribe en todas las celdas de la página de una vez si previamente ha sido borrado, degradando todas las celdas de la misma página.

Bloques editar

 
Estructura lógica de un bloque NAND

Un bloque de celdas NAND lo forman un conjunto de páginas unidas. Puede almacenar entre 128 y 512 páginas, según cada fabricante.

La operación asociada al bloque es el borrado de todas sus páginas, de esta forma las páginas podrán ser escritas de nuevo pues la sobreescritura no se soporta. El borrado también degrada todas las celdas del mismo bloque.

Capas editar

 
Estructura lógica de un chip NAND

Cada capa o plano lo forman un conjunto de 256 o 512 bloques. Las capas a su vez se agrupan en dados que se encapsulan para formar un dispositivo o chip NAND. Las capas se aíslan unas de otras con otra capa intercalada que contiene sustrato únicamente (tipo sandwich).

Funciones editar

Lectura de datos (en Páginas) editar

El proceso de lectura datos consiste en seleccionar una página NAND y aplicar una pequeña corriente a la puerta flotante y obtener los resultados contenidos en ella. Estos datos son volcados a la caché del dispositivo. Este proceso no produce un gran deterioro de la celda NAND.

Escritura de datos (en Páginas) editar

 
Escrituras en páginas NAND

El bloque tiene que haber sido borrado previamente. No se permiten las reescrituras de páginas. Por tanto las páginas válidas y no válidas no se podrán utilizar hasta que no se borre todo el bloque.

El proceso de escritura datos consiste en seleccionar una página NAND y aplicar una alta corriente a la puerta flotante y guardando los resultados provenientes de la caché del dispositivo. Este proceso produce un deterioro (tunelizado (Fowler-Nordheim tunnelling) desde el sustrato a la capa flotante a través del aislante) de la celda NAND. No existe una unidad menor para escribir y leer puesto que la controladora direcciona con páginas.

Borrado de datos (en bloques) y Recolección de elementos no utilizados (Recolección de basura) editar

 
borrado de bloques NAND

El proceso de borrar datos consiste en expulsar los electrones de la puerta flotante y tunelizarlos (Fowler-Nordheim tunnelling) hasta el sustrato a través de la capa aislante. Se realiza al aplicar un voltaje más alto al sustrato. Con esto las celdas se deterioran debido al estrés de la tensión. La celda vuelve a su estado natural.

El borrado se realiza por bloques. Toda la información contenida en ellos es borrada. Por tanto, antes del borrado se deben mover las páginas válidas (con información) a los bloques que no se van a borrar próximamente, a este proceso se le denomina la recolección de elementos no utilizados (basura). Los S.O. y los usuarios pueden realizarlo mediante el comando TRIM.

Detectar bloques defectuosos editar

NAND se basa en ECC para compensar los bits que pueden fallar de forma espontánea durante el funcionamiento normal del dispositivo. La ECC no puede corregir el error durante la lectura. En las operaciones de borrado o escritura, el dispositivo puede detectar bloques que no se puede escribir o borrar, marcándolos como bloques no válidos. Entonces los datos son escritos en otros bloques válidos, y el mapa de bloques defectuosos se actualiza y se pierde la capacidad correspondiente del dispositivo.

La mayoría de los dispositivos NAND se entregan desde fábrica con algunos bloques defectuosos. Por lo general son marcados de acuerdo con una estrategia preestablecida que los marca como bloques no válidos. Al permitir que algunos bloques sean marcados como defectuosos, los fabricantes pueden alcanzar beneficios más elevados. Esto reduce significativamente los costes de flash NAND y sólo disminuye ligeramente la capacidad de almacenamiento de los dispositivos.

Nivelación de desgaste editar

 
Nivelado de ciclos de borrado en bloques NAND

La nivelación del desgaste (el desgaste uniforme) es una técnica que utilizan los controladores de los discos de estado sólido (SSD) para aumentar la vida útil de los dispositivos NAND. El principio es sencillo: distribuir uniformemente las escrituras de las páginas en todo el dispositivo. Para ello el controlador lleva la cuenta del número de escrituras de cada bloque. Cuando llegan nuevos datos a escribir se seleccionan las páginas con menores escrituras realizadas y posteriormente, cuando la caché del dispositivo se vacía, se realiza el movimiento de bloques con menores escrituras (datos estáticos: programas, drivers, SO, ...) a bloques que han sido muy utilizados (ficheros temporales SO y usuario, base de datos, ...).

Sobreaprovisionamiento[4] editar

 
Juego trivial: ordena las cajas

Si recordamos el tradicional juego de "ordenar los cuadrados". Con solo un cuadrado vacío, se requiere una gran cantidad de movimientos para ordenarlos. Pero si tenemos más espacio libre, la cantidad de movimientos disminuye considerablemente. Esto ocurre de manera similar en los dispositivos. La cantidad mínima de sobreaprovisionamiento para un dispositivo se establece en fábrica (un 7% para usuarios y un 23% para empresas) y no puede ser modificada por el usuario. Sin embargo, los usuarios pueden asignar más espacio libre y decidir no utilizarlo para conseguir un mejor rendimiento. Es un espacio libre que deja el disco duro para poder hacer movimientos más faciles.

Factor de amplificación de escritura () editar

La amplificación de escritura (WAF) es un fenómeno indeseable asociado con la memoria flash (SSD), donde la cantidad real de información escrita físicamente (datos enviados + nivelación + corrección bloques defectuosos + metadatos asociados) en la memoria flash respecto a los enviados por el host. Por tanto es un múltiplo de la cantidad lógica que se pretende escribir. Normalmente el valor de WAF no supera los 2 puntos y es mayor que 0, siendo lo normal entre 1 y 1.5.

Cálculo del Factor de amplificación de escritura (WAF):[5]:

 

Factores que afectan al WAF:

Factor Relación
Recolección de elementos no utilizados positivo: los bloques no válidos pueden borrarse y reutilizarse, generando más espacio libre.
Sobreaprovisionamiento Positivo: genera una menor cantidad de movimientos.
Espacio libre por el usuario Positivo: similar al sobreaprovisionamiento pero no se de confiar en el usuario que siempre tiende a utilizar todo el espacio posible.
Nivelación de desgaste Negativo: debido al movimiento, generará borrado de bloques
Separación de datos estáticos y dinámicos en bloques diferentes positivo: los datos estáticos permanezcan en reposo y, si nunca se reescriben, tendrá la amplificación de escritura más baja posible para esos datos. El inconveniente de este proceso es que de alguna manera el controlador SSD aún debe encontrar una manera de nivelar los datos estáticos para que los bloques lleguen a los ciclos borrados máximos.
TRIM Positivo: similar a la recolección de elementos no utilizados
Datos secuenciales positivo: se generan pocas modificaciones en algunos bloques y en la LBA.
Datos aleatorios negativo: se generan muchos modificaciones en muchos bloques y en la LBA.
Compresión de datos positivo: similar a los datos secuenciales al comprimir
Período de vida útil (TBW / Años) editar

TeraBytes Escritos, es una medida de la resistencia de la unidad de estado sólido (SSD), indica el total de escrituras físicas en bytes a lo largo de su vida útil. En esta medida se debe incluir la amplificación de escritura (WAF). Cuando llegue a su máximo de escrituras la SSD no soportará la escritura, por tanto solo se podrá leer la información de la SSD.


Los años de garantía indica el tiempo en años que garantiza el fabricante en un entorno normal de funcionamiento hasta que no soporte la escritura.


Así por ejemplo una SSD con capacidad 500GB, 150 TBW y 5 años de garantía se puede calcular las escrituras máximas diarias:

  1. Se convierte a GiB: 150 TBW * 1024= 153600 GiBW
  2. Se calcula los GiB con un WAF= 1,5 estimado
 

Resulta datos enviados por el SO=102400 GiBW

 

Resulta 56,1 GiB escritos diarios que soportará en los 5 años de garantía.

Interpretando DWPD editar

Cuando las SSD tienen capacidades diferentes, la cantidad total de datos que se puede escribir puede variar drásticamente.
Por ejemplo: una SSD de 1 TB, “1 DWPD” y una SSD de 15 TB, “1 DWPD”, ambos con una garantía de 5 años.

TBW (1TB) = 1TB * 1 DWPD * 365 días / año * 5 años = 1,825 TBW
TBW (15TB) = 15TB * 1 DWPD * 365 días / año * 5 años = 27,375 TBW (justo 15 veces superior)

Dispositivos editar

Unidad de Estado Sólido editar

 
Tarjeta Estado Sólido (SSD) de un Asus Eee Pc 901 de 8 Gb (Mini PCI Express)
 
Un SSD estándar de 2,5 pulgadas (64 mm) de factor de forma.
 
Desensamblado HDD y SSD

Una unidad de estado sólido o SSD (acrónimo en inglés de solid-state drive) es un dispositivo de almacenamiento de datos que usa una memoria no volátil, como la memoria flash, o una memoria volátil como la SDRAM, para almacenar datos, en lugar de los platos giratorios magnéticos encontrados en los discos duros convencionales. En comparación con los discos duros tradicionales, las unidades de estado sólido son menos sensibles a los golpes, son prácticamente inaudibles y tienen un menor y constante tiempo de acceso y de latencia. Las SSD hacen uso de la misma interfaz que los discos duros y, por lo tanto, son fácilmente intercambiables sin tener que recurrir a adaptadores o tarjetas de expansión para compatibilizarlos con el equipo.

Son comercializadas con las dimensiones heredadas de los discos duros, es decir, en 3,5 pulgadas, 2,5 pulgadas y 1,8 pulgadas, aunque también ciertas SSD vienen en formato «tarjeta de expansión».

En algunos casos, las SSD pueden ser más lentas que los discos duros, en especial con controladoras antiguas de gamas bajas, pero dado que los tiempos de acceso de una SSD son inapreciables, al final resultan más rápidos. Este tiempo de acceso tan corto se debe a la ausencia de piezas mecánicas móviles, inherentes a los discos duros.

Aunque técnicamente no son discos, a veces se traduce erróneamente en español la "D" de SSD como "disk" cuando, en realidad, representa la palabra "drive", que podría traducirse como unidad o dispositivo.

 
Unidad de estado sólido SSD con interfaz M.2

El rendimiento de las SSD se incrementan añadiendo chips NAND Flash en paralelo. Un sólo chip NAND Flash es relativamente lento, dado que la interfaz de entrada y salida es de 8 ó 16 bits y también por la latencia adicional de las operaciones básicas de E/S. Cuando varios dispositivos NAND operan en paralelo dentro de un SSD, las escalas de ancho de banda se incrementan y las latencias de alta se minimizan, siempre y cuando las operaciones se distribuyan uniformemente entre los chips.

La SSD se compone principalmente de:

  • Controladora: Es un procesador electrónico que se encarga de administrar, gestionar y unir los módulos de memoria NAND con los conectores en entrada y salida. Ejecuta software a nivel de firmware y es, con toda seguridad, el factor más determinante para las velocidades del dispositivo. Dos tipos:
    • SATA
    • NVMe, o Non-Volatile Memory es una especificación para el acceso a las unidades de estado sólido (SSD) conectadas a través del bus PCI Express o SATA Express. Aprovecha el paralelismo de acceso a los datos de los chips para incrementar la velocidad de transferencia de datos.
  • Buffer: Un dispositivo SSD utiliza un pequeño dispositivo de memoria DRAM similar al caché de los discos duros. El directorio de la colocación de bloques y el desgaste de nivelación de datos también se mantiene en la memoria caché mientras la unidad está operativa.
  • Condensador: Es necesario para mantener la integridad de los datos de la memoria caché, si la alimentación eléctrica se ha detenido inesperadamente, el tiempo suficiente para que se puedan enviar los datos retenidos hacia la memoria no volátil.

Memoria USB editar

Las partes típicas de una memoria USB son las siguientes:

  • Un conector USB macho tipo B (3): Provee la interfaz interna con la computadora.
  • Controlador USB de almacenamiento masivo (2): Implementa el controlador USB y provee la interfaz homogénea y lineal para dispositivos USB seriales orientados a bloques, mientras oculta la complejidad de la orientación a bloques, eliminación de bloques y balance de desgaste. Este controlador posee un pequeño microprocesador y un pequeño número de circuitos de memoria RAM y DDR5.
  • Circuito de memoria Flash NAND (4): Almacena los datos.
  • Oscilador de cristal (8): Produce la señal de reloj principal del dispositivo a 800 MHz y controla la entrada de datos a través de un bucle.

Secure Digital editar

 
 
Tarjetas SD, mini SD y micro SD (de arriba a abajo).

Secure Digital (SD) es un formato de tarjeta de memoria inventado por Panasonic. Se utiliza en dispositivos portátiles tales como cámaras fotográficas digitales, PDA, teléfonos móviles, computadoras portátiles e incluso videoconsolas (tanto de sobremesa como portátiles), entre muchos otros.

Estas tarjetas tienen unas dimensiones de 32 mm x 24 mm x 2,1 mm

Hay algunas tarjetas SD que tienen un conector USB integrado con un doble propósito, y hay lectores que permiten que las tarjetas SD sean accesibles por medio de muchos puertos de conectividad como USB, FireWire y el puerto paralelo común.

Las velocidades mínimas garantizadas de transferencia que aseguran las tarjetas han sido estandarizadas con las siguientes nomenclaturas:


Velocidad mínima de escritura secuencial Clase de velocidad UHS: velocidad escritura mínima garantizada Clase de velocidad de Vídeo Aplicación
2 MB/s   Class 2 (C2) - - Grabación de vídeo en definición estándar (SD)
4 MB/s   Class 4 (C4) - - Grabación de vídeo en Alta definición (HD) [720p]
6 MB/s   Class 6 (C6) -   Class 6 (V6)
10 MB/s   Class 10 (C10)   Class 1 (U1)   Class 10 (V10) Full HD (1080p) Grabación de vídeo y grabación consecutiva de imágenes en HD (bus de alta velocidad), emisión en tiempo real y vídeos largos en HD (UHS bus)
30 MB/s -   Class 3 (U3)   Class 30 (V30) 4K ficheros de vídeo a 24/30 fps (UHS bus)
60 MB/s - -   Class 60 (V60) 4K ficheros de vídeo a 60/120 fps (UHS bus)
90 MB/s - -   Class 90 (V90)
Clase de Perfil Velocidad mínima de escritura secuencial Mínima de lectura aleatoria Mínima de escritura aleatoria
  Class 1 (A1) 10 MB/s 1500 IOPS 500 IOPS
  Class 2 (A2) 4000 IOPS 2000 IOPS
Interfaz de bus Logotipo de la tarjeta Logotipo del bus Velocidad del bus Versión de especificaciones
Default Speed       12,5 MByte/s 1.01
High Speed 25 MByte/s 2.00
UHS-I       12,5 MByte/s (SDR12)
25 MByte/s (SDR25)
50 MByte/s (SDR50, DDR50)
104 MByte/s (SDR104)
3.01
UHS-II   156 MByte/s (FD156)
312 MByte/s (HD312)
4.00/4.10[6]
UHS-III   312 MByte/s (FD312)
624 MByte/s (FD624)
6.0[7]

WEB comparativa de rendimientos de SD editar

En el web Camara Memory Speed

Se utilizan diferentes programas comparadores para realizar las pruebas, Se extraen unos resultados que se publican en el web.

Se puede observar comparativas de discos en lecturas, escrituras.

Resulta interesante consultarla antes de adquirir un disco duro. Pero no están todos los modelos.

eMMC editar

 
Chip eMMC Samsung KLMCG8GEAC-B001. A la izquierda se observa el BGA de conexionado a la placa base

La arquitectura eMMC integra los componentes MMC (memoria flash y controlador) en un pequeño paquete BGA (matriz de bolillas), para su utilización en circuitos impresos como sistema de almacenamiento embebido no volátil (teléfonos inteligentes, tabletas, etc.). Se caracteriza por su su bajo consumo eléctrico.

Interfaces (Tipos de conexión) editar

 
Interfaz SATA de un disco duro
 
Conexionado SAS tipo SFF-8484-Kabel. Se observa un conector SAS para el disco duro y los cuatro conectores o líneas tipo SATA para el host o placa base

PATA editar

Integrated Drive Electronics ("Dispositivo electrónico integrado") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros.

SATA (Serial ATA), mSATA: editar

Es el más utilizado hoy en día, utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. Versiones:

  • SATA 1 de hasta 150 MB/s, está descatalogado.
  • SATA 2 de hasta 300 MB/s, el más extendido en la actualidad.
  • SATA 3 de hasta 750 MB/s el cual se está empezando a hacer hueco en el mercado.

PCIe editar

Suelen utilizarla los discos SSD de alto rendimiento para evitar el cuello de botella de SATA o incluso SAS. Es una conexión PCI Express 3.0 directa al disco SSD. Va a sustituir al conector mSATA actual por su altísimo rendimiento y su mejora en la eficiencia energética en modo hibernación o suspensión.

 
Conector M.2 tipo M, factor forma compatible 2242 (22x42mm)/2260/2280/22110
 
conectores M.2 tipos B, M y B+M. M.2 para dispositivo (abajo) y placa base (arriba)

M.2 editar

Es una especificación de PCI Express para la ampliación con tarjetas de expansión interna de ordenadores y sus conectores asociados. Sustituye al estándar mSATA. M.2 utiliza la ranura física tipo MiniCard. Las especificaciones de M.2 son más flexibles, lo que permite diferentes longitudes y anchos de módulos, así como, unido a la disponibilidad de interfaces más avanzadas, hacen al estándar M.2 más idóneo que el mSATA para las SSD en general y para su uso en dispositivos más pequeños como ultrabooks o tablet. La interfaz del bus de datos que está detrás (interna/no visible) del conector M.2 según:

Tipo M: editar
  • Conector interno: PCIe ×4, SATA que aprovecha totalmente la velocidad de almacenamiento de los dispositivos PCI Express para admitir muchas operaciones I/O en paralelo.
  • Factor forma: 2242 (22mm x 42 mm), 2260, 2280, 22110.
Tipo B: editar
  • Conector interno: PCIe ×2, SATA y USB 3.0
  • Factor forma: 3042 (30 mm x 42 mm), 2230, 2242, 2260, 2280, 22110 (22 mm x 110 mm)


Elección / comparativa objetiva ponderada entre varios dispositivos editar

Cuando se debe elegir un dispositivo (por ejemplo: un SSD) y se consideran varios parámetros o características diferentes en los que no se pueden operar directamente (por ejemplo: capacidad, velocidades), se debe ponderar o priorizar los parámetros o características sobre los otros según la importancia que se decida (por ejemplo: la capacidad un 60% sobre el resto de parámetros o características ). La suma de todas las ponderaciones deberá resultar 100.

Para ello se deberá enumerar los parámetros o características a seleccionar y se deberá reflexionar en el porcentaje o puntuación de 0 a 100 a aplicar en cada uno de ellos (estudio del caso o auditoría previa). Por ejemplo en un SSD: precio 60%, velocidad lectura 25% y un 15% en la velocidad de escritura. Total suma 100%.

Después se deberá elegir algunos dispositivos que serán los candidatos a la elección. Por ejemplo:

  1. ssd1: PVP=100€, Vr=300MB/s ,Vw=200MB/s
  2. ssd2: PVP=80€, Vr=200MB/s ,Vw=100MB/s
  3. ssd3: PVP=120€, Vr=400MB/s ,Vw=100MB/s

El paso siguiente será elegir el valor ideal de cada parámetro, será el máximo (por ejemplo: capacidad, velocidades de transferencia,...) o el mínimo (por ejemplo: precio, latencias,...). Siguiendo con el ejemplo:

  1. PVP (mínimo) 80€
  2. Vr (máximo) 400MB/s
  3. Vw (máximo) 200MB/s

Ahora se trata de aplicar un puntuación de 0 a 100 a cada parámetro de manera proporcional, se utiliza la regla de tres directa para los máximos, y la regla de tres inversa para los parámetros mínimos. Se sustituye la medida real por la puntuación obtenida de 0 a 100. Siguiendo con el ejemplo:

  1. ssd1: PVP=80, Vr=75 ,Vw=100
  2. ssd2: PVP=100, Vr=50 ,Vw=50
  3. ssd3: PVP=67, Vr=100 ,Vw=50

Finalmente se multiplican las puntuaciones por la ponderación y se suman los resultados. El dispositivo óptimo obtendrá la mayor puntuación y será el elegido. Siguiendo con el ejemplo:

  1. ssd1: (60*80) + (25*75) + (15*100)= 8175. Elección pues es el valor más alto
  2. ssd2: (60*100) + (25*50) + (15*50)= 8000
  3. ssd3: (60*67) + (25*100) + (15*50)= 7270

Si se puede realizar con una hoja de cálculo, se podrá variar o incluir muchos más parámetros o dispositivos sin apenas esfuerzo. Pero lo adecuado siempre será la elección y reflexión en el porcentaje a aplicar en cada uno de ellos pues se basa en ello.

Cuando obtengamos valores muy similares entre el dispositivo elegido y alguno de los no elegidos se puede recurrir a comparar algún otro parámetro secundario a la elección (IOPS, temperatura de trabajo, tiempo de acceso,...) para poderlo diferenciar mejor.

Por otro lado, se llama cocinar una elección al proceso inverso: primero se selecciona un dispositivo, después se amaña o se falsea las ponderaciones de los parámetros o características y finalmente se intentan justificar los ponderaciones aplicadas en la falsa elección.

Auditoría con S.M.A.R.T. editar

 
GSmartControl: información general de un disco magnético
 
GSmartControl: información general de un SSD

La tecnología S.M.A.R.T., siglas de Self Monitoring Analysis and Reporting Technology, consiste en la capacidad de detección de fallos del disco duro. La detección con anticipación de los fallos en la superficie permite al usuario el poder realizar una copia de su contenido, o reemplazar el disco, antes de que se produzca una pérdida de datos irrecuperable.

Este tipo de tecnología tiene que ser compatible con la BIOS del equipo, estar activada y además que el propio disco duro la soporte.

Principales parámetros a controlar editar

Los parámetros más característicos a controlar son los siguientes:

  • Temperatura del disco. El aumento de la temperatura a menudo es una señal de problemas de motor del disco.
  • Velocidad de lectura de datos. Una reducción en la tasa de transferencia de la unidad puede ser una señal de diversos problemas internos.
  • Tiempo de partida (spin-up). Unos cambios en el tiempo de partida pueden ser un reflejo de unos problemas con el motor del disco.
  • Contador de sectores reasignados. La unidad reasigna muchos sectores internos debido a los errores detectados, esto puede significar que la unidad va a fallar definitivamente.
  • Velocidad de búsqueda (Seek time). Relacionado con la altura de vuelo del cabezal. La tendencia a la baja en altura de vuelo a menudo presagian un accidente del cabezal.
  • Uso de ECC y Conteo de errores: El número de errores detectados por la unidad, aunque se corrijan internamente, a menudo señala problemas con el desarrollo de la unidad. La tendencia es, en algunos casos, más importante que el conteo real.

Los valores de los atributos S.M.A.R.T van del número 1 al 253, siendo 1 el peor valor. Los valores normales son entre 100 y 200. Estos valores son guardados en un espacio reservado del disco duro.

Si el BIOS detecta una anomalía en el funcionamiento, avisará al usuario cuando se inicie el proceso de arranque del computador con el disco duro estropeado o con grandes posibilidades de que ocurra algún fallo importante.

La mayoría de los fabricantes de discos duros y de placas madre incorporan esta característica en sus productos.

Prácticas en el aula (tema 7.3) editar

Actividades editar

1.- Describe brevemente cómo funcionan, la capacidad y los precios de los formatos de cinta DDS4 y DAT 320.

2.- Investiga en la red qué tipos de formatos CD son los siguientes: CD-i, CDROM-XA, Photo CD, CD Extra, Video CD y Super Video CD.

3.- Investiga si es posible instalar un sistema operativo en una partición lógica. ¿Qué sistemas operativos permiten esto?

4.- En una máquina virtual, utiliza un disco vacío de 6GB y crea 6 particiones, aprovechando al máximo las particiones primarias. Para ello utiliza Parted Magic, gParted u otra herramienta similar.

5.- Tenemos un disco que da 27.000 vueltas cada 5 minutos y tarda en ir de la pista más cercana al eje de la más alejada y volver 6 milisegundos. Se pide: RPM del disco, Latencia media, Tiempo medio de búsqueda, Tiempo medio de acceso.

6.- Un disco tiene las siguientes características:

  • Descripción técnica Caviar Blue, 500GB
  • Capacidad de disco duro:500 GB
  • Velocidad de rotación del disco duro 7200 RPM
  • Interfaz del disco duro:Serial ATA
  • Memoria temporal:16 MB
  • Transmisión de datos:
    • Velocidad de transferencia de datos: 6 Gbit/s
    • Unidad de dispositivo, velocidad de transferencia lectura: 126 MB/s
    • Unidad de dispositivo, velocidad de transferencia escritura: 115 MB/s

¿Cuánto tiempo tardará en transferir 1,3 Gigabytes del disco a la memoria?

7.- Un disco Western Digital tiene las siguientes especificaciones:

  • Rotational Speed: 7200 RPM
  • Buffer Size: 16 MB
  • Average Latency: 4,20 ms (nominal)
  • Contact Start/Stop Cycle: 50.000 minimum
  • Seek Time:
    • Read Seek Time: 8,9 ms
    • Write Seek Time: 10,9 ms (average)
    • Track-to-track Seek Time: 2,0 ms (average)
    • Full Stroke Seek: 21,0 ms (average)
  • Transfer Rates
    • Buffer to Host (Serial ATA): 300 MB/s (Max)
    • Buffer to Disk : 748 Mbits/s (Max)
  • Reccomended Configuration Parameters
    • Number of Heads (Physical): 6
  • Physical Specifications
    • Formated Capacity: 250.059 MB
    • Capacity: 250 GB
    • Interface (tipo de interfaz). SATA 300 MB/s
    • Numbers of Platters: 3
    • Bytes per Sector: 512
    • User Sectors Per Drive: 488.397.168

Explica brevemente cada uno de estos parámetros.

8.- ¿Qué es un dispositivo de almacenamiento magneto-óptico?, ¿cómo se realiza la lectura y escritura en estos dispositivos?, ¿qué tamaños y capacidades tienen los cartuchos o discos magneto-ópticos?

9.- ¿Qué es un head crash en un disco duro?

10.- ¿Qué es una avería por descompensación térmica en un disco?

11.- Elige, justifica y compara "mediante la elección/comparativa objetiva ponderada", vista en este tema, una unidad de almacenamiento (magnético o SSD) para una empresa dedicada a reproducir (como una sala de cine), no importa el precio ni la capacidad de la unidad de almacenamiento, interesa las características de la unidad de almacenamiento (transferencia lectura, temperaturas de trabajo, período de vida útil) y en PassMark Software encontrarás estadísticas (Chart) para poder elegir.

12.- Elige, justifica y compara "mediante la elección/comparativa objetiva ponderada", vista en este tema, una unidad de almacenamiento para un alumno que necesita cambiar su disco duro de su PC de escritorio, no importa el precio ni la capacidad del disco, interesa las características de la unidad de almacenamiento y en UserBenchmark encontrarás estadísticas (Chart) para poder elegir.

13.- Compara de un disco duro con un SSD: precio, capacidades máximas, tiempo de acceso, tasas de escritura y lectura.

  1. [1]Seagate: Transición a las unidades de disco duro con sectores de Advanced Format de 4KB
  2. «Unidades de estado sólido 101: todo lo que siempre quiso saber» Steve Larrivee.
  3. «Differences Among SSD NAND Flash Memory: QLC/SLC/MLC/TLC» John Weaver .
  4. «SSD Over-Provisioning And Its Benefits» SeaGate.
  5. «Intel Solid State Drives». Intel. Consultado el 2010-05-31.
  6. SD Bus Speed. SD Association.
  7. «Understanding the New UHS-III».