Mantenimiento y Montaje de Equipos Informáticos/Tema 2/La memoria R.A.M.


Índice de La memoria R.A.M.

18:57 25 sep 2023

Índice del «Tema 2»

MME: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

La RAM o memoria de acceso aleatorio (en inglés: random-access memory) o también llamada RWM (Tema 1) se utiliza como memoria de trabajo para el sistema operativo, los programas y la mayoría del software. Es allí donde se cargan todas las instrucciones que ejecutan el procesador y otras unidades de cómputo. Se denominan «de acceso aleatorio» porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder a la información de la manera más rápida posible. Durante el encendido del computador, la rutina POST verifica que los módulos de memoria RAM estén conectados de manera correcta. En el caso que no existan o no se detecten los módulos, la mayoría de tarjetas madres emiten una serie de pitidos que indican la ausencia de memoria principal. Terminado ese proceso, la memoria BIOS puede realizar un test básico sobre la memoria RAM indicando fallos mayores en la misma.

DIMM normal y corriente de memoria RAM tipo DDR4-2666 1.2 V UDIMMs

La expresión memoria RAM se utiliza frecuentemente para describir a los módulos de memoria utilizados en los computadores personales y servidores. En el sentido estricto, esta memoria es solo una variedad de la memoria de acceso aleatorio: las ROM, memorias Flash, caché (SRAM), los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier posición. Los módulos de RAM son la presentación comercial de este tipo de memoria, que se compone de circuitos integrados soldados sobre un circuito impreso independiente, en otros dispositivos como las consolas de videojuegos, la RAM va soldada directamente sobre la placa principal.

Comparativa de memorias DDR para PC Escritorio

Tipos:

DDR5 SDRAM es la memoria de acceso aleatorio dinámico síncrono de quinta generación de datos.[1][2] Se planeó que DDR5 reduzca el consumo de energía, mientras se duplica el ancho de banda pasando de 3,2 GB/s a los 6,4 GB/s, doblando también su tasa de transferencia máxima de los 25,6 GB/s de las DDR4 actuales a un máximo de 51,2 GB/s y la capacidad en relación con la SDRAM DDR4. La frecuencia base para la RAM DDR5 es DDR5-4800.

La DDR5 permitirá que los reguladores de voltaje sean montados directamente en los propios módulos de memoria en vez de tener que ir en la placa base como hoy en día.[3]

El tamaño de la memoria que aceptarán las placas base compatibles con DDR5 también aumentará, pasando de 12 a 16 canales. Esto permitirá pasar del límite actual de 64 GB de las principales placas de consumo hasta los 128 GB de RAM.

Módulo de memoria DDR4.

Los módulos de memoria DDR4 SDRAM tienen un total de 288 pines DIMM. Las memorias DDR4 SDRAM tienen un mayor rendimiento (un máximo de 3,2 gigatransferencias por segundo (GT/s)) y menor consumo (1,05 V) que las memorias DDR predecesoras. Los tipos disponibles son:

  • PC4-12800 o DDR4-1600: funciona a un máx de 1600 MHz.
  • PC4-14900 o DDR4-1866: funciona a un máx de 1866 MHz.
  • PC4-17000 o DDR4-2133: funciona a un máx de 2133 MHz, esto es, 2133 operaciones por segundo.
  • PC4-19200 o DDR4-2400: funciona a un máx de 2400 MHz.
  • PC4-21300 o DDR4-2666: funciona a un máx de 2666 MHz.
  • PC4-23400 o DDR4-2993: funciona a un máx de 2993 MHz.
  • PC4-25500 o DDR4-3600: funciona a un máx de 3600 MHz.

SO-DIMM

editar
PC2700 200-pin SO-DIMM
Comparativa entre memorias SO-DIMM

Las memorias SO-DIMM (Small Outline DIMM) consisten en una versión compacta de los módulos DIMM convencionales. Debido a su tamaño tan compacto, estos módulos de memoria suelen emplearse en computadores portátiles y notebooks, aunque han comenzado a sustituir a los DIMM en impresoras de gama alta y tamaño reducido y en equipos con placa base miniatura (Mini-ITX).

Los módulos SO-DIMM tienen 100, 144 ó 200 pines. Los de 100 pines soportan transferencias de datos de 32 bits, mientras que los de 144 y 200 lo hacen a 64 bits. Estas últimas se comparan con los DIMM de 168 pines (que también realizan transferencias de 64 bits). A simple vista se diferencian porque las de 100 tienen 2 hendiduras guía, las de 144 una sola hendidura casi en el centro, y las de 200 una hendidura parecida a la de 144 pero más desplazada hacia un extremo.

Los SO-DIMM tienen más o menos las mismas características en voltaje y potencia que las DIMM corrientes, utilizando además los mismos avances en la tecnología de memorias con capacidades de hasta 2 GB y Latencia CAS (de 2.0, 2.5 y 3.0). Tipos de SO-DIMMs según su cantidad de contactos o pines:

  • 200-pin SO-DIMM, usados por DDR SDRAM y DDR2 SDRAM
  • 204-pin SO-DIMM, usados por DDR3 SDRAM.

Latencia CAS

editar

CAS es un acrónimo para Column Address Strobe o Column Address Select. Se refiere a la posición de la columna de memoria física en una matriz (constituida por columnas y filas) de condensadores usados en la memoria RAM. Así, la latencia CAS (CL) es el tiempo (en número de ciclos de reloj) que transcurre entre que el controlador de memoria envía una petición para leer una posición de memoria y el momento en que los datos son enviados a los pines de salida del módulo.

Al seleccionar una tarjeta de memoria RAM, cuanto menor sea la latencia CAS (dada la misma velocidad de reloj), mejor será el rendimiento del sistema. La RAM DDR debería tener una latencia CAS de aproximadamente 3 u, óptimamente, 2 (y más recientemente tan bajo como 1,5). La RAM DDR2 puede tener latencias en los límites de 3 a 5.

La comparación CAS con las velocidades de reloj podría resultar engañosa: la latencia CAS sólo especifica el tiempo entre la petición y el primer bit obtenido. La velocidad de reloj especifica la latencia entre bits. Así, leyendo cantidades importantes de datos, una velocidad de reloj más alta puede ser más eficiente en la práctica, incluso con una latencia CAS mayor de 5.

Detección y corrección de errores

editar

Existen dos clases de errores en los sistemas de memoria:

  • Las fallas (hard fails [4], derivado de hardware failures) que son daños en el hardware, son relativamente fáciles de detectar (en algunas condiciones el diagnóstico es equivocado).
  • Los errores (soft errors [4] o soft fails) que son provocados por causas fortuitas, son resultado de eventos aleatorios, y son más difíciles de detectar. Se aplican técnicas de corrección y detección de errores basadas en diferentes estrategias:
    • La técnica del bit de paridad consiste en guardar un bit adicional por cada byte de datos y luego en la lectura se comprueba si el número de unos es par (paridad par) o impar (paridad impar), detectándose así el error.
    • Una técnica mejor es la que usa ECC, que permite detectar errores de 1 a 4 bits y corregir errores que afecten a un sólo bit. Esta técnica se usa sólo en sistemas que requieren alta fiabilidad.

Por lo general los sistemas con cualquier tipo de protección contra errores tiene un costo más alto, y sufren de pequeñas penalizaciones en su desempeño, con respecto a los sistemas sin protección. Para tener un sistema con ECC o paridad, el chipset y las memorias deben tener soporte para esas tecnologías. La mayoría de placas base no poseen dicho soporte.

Para los fallos de memoria se pueden utilizar herramientas de software especializadas que realizan pruebas sobre los módulos de memoria RAM. Entre estos programas uno de los más conocidos es la aplicación Memtest86+ que detecta fallos de memoria (ver tema 8).

Memoria RAM registrada

editar
Se observa un pequeño chip central utilizado en la RAM registrada

Es un tipo de módulo usado frecuentemente en servidores con varios procesadores (procesamiento asimétrico), posee circuitos integrados que se encargan de repetir las señales de control y direcciones: las señales de reloj son reconstruidas con ayuda del PLL que está ubicado en el módulo mismo. Las señales de datos se conectan de la misma forma que en los módulos no registrados: de manera directa entre los integrados de memoria y el controlador. Los sistemas con memoria registrada permiten conectar más módulos de memoria y de una capacidad más alta, sin que haya perturbaciones en las señales del controlador de memoria, permitiendo el manejo de grandes cantidades de memoria RAM. Entre las desventajas de los sistemas de memoria registrada están el hecho de que se agrega un ciclo de retardo para cada solicitud de acceso a una posición no consecutiva y un precio más alto que los módulos no registrados. La memoria registrada es incompatible con los controladores de memoria que no soportan el modo registrado, a pesar de que se pueden instalar físicamente en el zócalo. Se pueden reconocer visualmente porque tienen un integrado mediano, cerca del centro geométrico del circuito impreso, además de que estos módulos suelen ser algo más altos.

WEBs comparativas de rendimientos de memoria RAM

editar

En la web Pass Mark podemos ver los rendimientos de los chips de memoria RAM de diversas marcas con tres tipos de test:

  • Comparativa de Lectura
  • Comparativa de Escritura
  • Comparativa de Latencia


Otra web UserBenchmark realiza una comparativa similar.


Han colaborado miles de usuarios mediante aportaciones desinteresadas. Resulta interesante consultarla antes de adquirir o ampliar la memoria RAM.

  1. FM, Yúbal (23 de septiembre de 2017). «Nuevos datos de la memoria RAM DDR5: el doble de rápida y llegada a partir de 2019» (en es). Consultado el 10 de febrero de 2019.
  2. Press, Rambus. «Next-gen server DIMM buffer chipset targets DDR5 memory» (en en-us). Consultado el 10 de febrero de 2019.
  3. «Todo lo que sabemos de la memoria RAM DDR5 que llegará en 2019» (en es-es) (18 de octubre de 2018). Consultado el 10 de febrero de 2019.
  4. 4,0 4,1 IBM experiments in soft fails in computer electronics (1978-1994) http://www.pld.ttu.ee/IAF0030/curtis.pdf