Matemáticas/Geometría/Triángulos/Tipos de Triángulos
Los triángulos se pueden clasificar por la relación entre las longitudes de sus lados o por la amplitud de sus ángulos.
Por las longitudes de sus lados
editaren función de sus lados, todo triángulo se clasifica:
- Como triángulo equilátero, cuando los tres lados del triángulo tienen una misma longitud (los tres ángulos internos miden 60 grados o radianes).
- Como triángulo isósceles (del griego ἴσος "igual" y σκέλη "piernas", es decir, "con dos piernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a estos lados tienen la misma medida. (Tales de Mileto, filósofo griego, demostró que un triángulo isósceles tiene dos ángulos iguales, estableciendo así una relación entre longitudes y ángulos; a lados iguales, ángulos iguales[1]).
Un triángulo es isósceles cuando tiene dos lados iguales; esto no descarta que los tres lados sean iguales, de modo que todo triángulo equilátero sea isósceles, pero no se cumple el enunciado recíproco.[2]
Sea el triángulo ABC isósceles, donde b = c entonces los ángulos opuestos son iguales, i.e B = C. También se cumple que B' = C' siendo estos los ángulos externos.Además se cumplen las igualdades
A + 2B = A +2C = 180º;
A' + 2B' = A' + 2C' = 360º; A' = 2C = 2B; B'=C'=A+B= A+C
donde son la mediana, altura del lado a y bisectriz de su ángulo A opuesto.[3]
- Como triángulo escaleno (del griego σκαληνός "desigual"), si todos sus lados tienen longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma medida).
Equilátero | Isósceles | Escaleno |
Por la amplitud de sus ángulos
editarPor la amplitud de sus ángulos los triángulos se clasifican en:
- Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa.
- Triángulo oblicuángulo: cuando ninguno de sus ángulos interiores es recto (90°). Por ello, los triángulos obtusángulos y acutángulos son oblicuángulos.Cualquier triángulo o bien es rectángulo o bien oblicuángulo. [4]
- Triángulo obtusángulo: si uno de sus ángulos interiores es obtuso (mayor de 90°); los otros dos son agudos (menores de 90°).
- Triángulo acutángulo: cuando sus tres ángulos interiores son menores de 90°.
Rectángulo | Obtusángulo | Acutángulo |
Oblicuángulos |
Clasificación según los lados y los ángulos
editarLos triángulos acutángulos pueden ser:
- Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro distinto. Este triángulo es simétrico respecto de su altura sobre el lado distinto.
- Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene eje de simetría.
- Triángulo acutángulo equilátero: sus tres lados y sus tres ángulos son iguales. Las tres alturas son ejes de simetría (dividen al triángulo en dos triángulos iguales).
Los triángulos rectángulos pueden ser:
- Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45° cada uno), dos lados son iguales y el otro diferente: los lados iguales son los catetos y el diferente es la hipotenusa. Es simétrico respecto a la altura de la hipotenusa, que pasa por el ángulo recto.
- Triángulo rectángulo escaleno: tiene un ángulo recto, y todos sus lados y ángulos son diferentes.
Los triángulos obtusángulos pueden ser:
- Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los que forman el ángulo obtuso; el otro lado es mayor que estos dos.
- Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.
Triángulo | equilátero | isósceles | escaleno |
---|---|---|---|
acutángulo | |||
rectángulo | |||
obtusángulo |
- ↑ Denis Guedj, El teorema del loro: Novela para aprender matemáticas, trad. francés Consuelo Serra, Colección Compactos, Editorial Anagrama, Barcelona, 2002, ISBN 84-339-6726-6.
- ↑ René Benítez. Geometría Plana. ISBN 978-968-24-8157-4
- ↑ Edgar de Alencar. Geometría Plana
- ↑ Si un triángulo es rectángulo no es oblicuángulo; y cuando un triángulo es oblicuángulo no es rectángulo. Hay dicotomía o una partición del conjunto de los triángulos del plano. c