Fundamentos de la Matemática/Galería de correspondencias

Para centrar ideas, veremos un caso con valores numéricos concreto, así definiremos una correspondencia entre dos conjuntos de números naturales A y B de modo que los elementos a de A están asociados con elementos b de B de modo que b sea un múltiplo de a.

R es la relación de pares ordenados (a,b) del producto cartesiano de A por B, tal que b sea un múltiplo de a.

Caso: 1

En la figura de la derecha tenemos que:

La correspondencia se define asociando el elemento a de A con el elemento b de b si b es múltiplo de a, su representación cartesiana seria la siguiente.

Unicidad de imagen: no
Unicidad de origen: no
Existencia de imagen: no
Existencia de origen: no

Caso: 2

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: si
Unicidad de origen: no
Existencia de imagen: no
Existencia de origen: no

Caso: 3

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: no
Unicidad de origen: si
Existencia de imagen: no
Existencia de origen: no

Caso: 4

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: si
Unicidad de origen: si
Existencia de imagen: no
Existencia de origen: no

Caso: 5

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: no
Unicidad de origen: no
Existencia de imagen: si
Existencia de origen: no

Caso: 6

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: si
Unicidad de origen: no
Existencia de imagen: si
Existencia de origen: no

Caso: 7

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: no
Unicidad de origen: si
Existencia de imagen: si
Existencia de origen: no

Caso: 8

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: no
Unicidad de origen: no
Existencia de imagen: no
Existencia de origen: si

Caso: 9

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: si
Unicidad de origen: no
Existencia de imagen: no
Existencia de origen: si

Caso: 10

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: no
Unicidad de origen: si
Existencia de imagen: no
Existencia de origen: si

Caso: 11

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: si
Unicidad de origen: si
Existencia de imagen: no
Existencia de origen: si

Caso: 12

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: no
Unicidad de origen: no
Existencia de imagen: si
Existencia de origen: si

Caso: 13

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: si
Unicidad de origen: no
Existencia de imagen: si
Existencia de origen: si

Caso: 14

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: no
Unicidad de origen: si
Existencia de imagen: si
Existencia de origen: si

Caso: 15

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: no
Unicidad de origen: si
Existencia de imagen: si
Existencia de origen: si

Caso: 16

En la figura de la derecha tenemos que:

Representación cartesiana:

Unicidad de imagen: si
Unicidad de origen: si
Existencia de imagen: si
Existencia de origen: si

Referencias

editar