Física/Vibraciones Mecánicas/Texto completo

Galileo Galilei

editar

(1563-1641) estudió con detenimiento este fenómeno. Para ello se ayudó de un péndulo, aparato que consta de un hilo y de una esfera u otro cuerpo que esta suspendido de el y oscila libremente. Con sus experimentos Galileo descubrió los principios básicos del MAS.

El movimiento que describe el cuerpo recorre la misma trayectoria cada determinado tiempo. Cuando un cuerpo con este movimiento se desplaza, origina un movimiento ondulatorio.

La materia y la energía están íntimamente relacionadas. La primera está representada por partículas y la segunda por "ondas", aunque hoy en día esa separación no está tan clara. En el mundo subatómico "algo" puede comportarse como partícula u onda según la experiencia que se esté haciendo. Por ejemplo, la electricidad está constituida por electrones y estos presentan este doble comportamiento.

El tipo de movimiento característico de las ondas se denomina movimiento ondulatorio. Su propiedad esencial es que no implica un transporte de materia de un punto a otro. Así, no hay una ficha de dominó o un conjunto de ellas que avancen desplazándose desde el punto inicial al final; por el contrario, su movimiento individual no alcanza más de un par de centímetros. Lo mismo sucede en la onda que se genera en la superficie de un lago o en la que se produce en una cuerda al hacer vibrar uno de sus extremos. En todos los casos las partículas constituyentes del medio se desplazan relativamente poco respecto de su posición de equilibrio. Lo que avanza y progresa no son ellas, sino la perturbación que transmiten unas a otras. El movimiento ondulatorio supone únicamente un transporte de energía y de cantidad de movimiento.

Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier punto de la trayectoria de propagación se produce un desplazamiento periódico, u oscilación, alrededor de una posición de equilibrio. Puede ser una oscilación de moléculas de aire, como en el caso del sonido que viaja por la atmósfera, de moléculas de agua (como en las olas que se forman en la superficie del mar) o de porciones de una cuerda o un resorte. En todos estos casos, las partículas oscilan en torno a su posición de equilibrio y sólo la energía avanza de forma continua. Estas ondas se denominan mecánicas porque la energía se transmite a través de un medio material, sin ningún movimiento global del propio medio. Las únicas ondas que no requieren un medio material para su propagación son las ondas electromagnéticas; en ese caso las oscilaciones corresponden a variaciones en la intensidad de campos magnéticos y eléctricos.

Las ondas: imaginemos un estanque de agua quieta al que tiramos una piedra, pronto, pero no instantáneamente, se formarán olas. Esas "olas" en realidad son ondas que se propagan desde el centro donde la piedra, al caer, es la "fuente" de perturbaciones circulares. Si llevamos este ejemplo a un parlante, este igual que la piedra, perturba el medio propagándose y alejándose de su fuente. Así como las ondas necesitaban al agua para poder difundirse, el sonido necesita del aire para lograr lo mismo.

Al arrojar una roca a un recipiente con agua (H2O) observamos la propagación de la onda de un lado a otro, por medio del agua, en ella se nota el movimiento ondulatorio.

La onda consta de dos movimientos: uno es la vibración de las partículas y otro es la propagación de la onda en sí. Si el movimiento de cada partícula es " de arriba hacia abajo y viceversa" la onda se llama transversal.. Si la partícula se mueve en la misma dirección de propagación moviéndose atrás y adelante, la onda recibe el nombre de longitudinal.

El sonido es una onda longitudinal mientras que la luz y cualquier onda electromagnética es transversales. Si hacemos ondas con una soga nos dará ondas transversales mientras que un resorte puede transportar ambos tipos de ondas.

Una onda es una perturbación periódica que se propaga en un medio o en el espacio transportando energía. La propagación de una onda involucra el desplazamiento elástico de partículas materiales o cambios periódicos en alguna cantidad física como la presión, la temperatura o los cambios electromagnéticos. Para descubrir una onda se considera: el valle, la cresta, el nodo, frecuencia, longitud de onda, la amplitud y la velocidad de propagación.

Lo que afirma la ley de la conservación de la energía; “La energía ni se crea ni se destruye simplemente se transforma”, la energía puede ser propagada a través del espacio y de la materia por medio de vibraciones, por ejemplo el sonido, la luz, las ondas de radio, esto se comprende estudiando como se forman, como se comportan y como se propagan.

En física una onda es una oscilación que se propaga por el espacio a partir de un medio, transportando energía pero no materia. Una onda es causada por algo que oscila, es decir, que se mueve repetidamente de un lado a otro en torno a una posición central o de equilibrio.

Las ondas son una perturbación periódica del medio en que se mueven. En las ondas longitudinales, el medio se desplaza en la dirección de propagación. Por ejemplo, el aire se comprime y expande (figura 1) en la misma dirección en que avanza el sonido. En las ondas transversales, el medio se desplaza en ángulo recto a la dirección de propagación. Por ejemplo, las ondas en un estanque avanzan horizontalmente, pero el agua se desplaza verticalmente.

Los terremotos generan ondas de los dos tipos, que avanzan a distintas velocidades y con distintas trayectorias. Estas diferencias permiten determinar el epicentro del sismo. Las partículas atómicas y la luz pueden describirse mediante ondas de probabilidad, que en ciertos aspectos se comportan como las ondas de un estanque.

Propagación de las ondas

editar

El mecanismo mediante el cual una onda mecánica monodimensional se propaga a través de un medio material puede ser descripto inicialmente considerando el caso de las ondas en un muelle. Cuando el muelle se comprime en un punto y a continuación se deja en libertad, las fuerzas recuperadoras tienden a restituir la porción contraída del muelle a la situación de equilibrio. Pero dado que las distintas partes del muelle están unidas entre sí por fuerzas elásticas, la dilatación de una parte llevará consigo la compresión de la siguiente y así sucesivamente hasta que aquélla alcanza el extremo final.

En las ondas en la superficie de un lago, las fuerzas entre las moléculas de agua mantienen la superficie libre como si fuera una película tensa. Tales fuerzas de unión entre las partículas componentes son las responsables e que una perturbación producida en un punto se propague al siguiente, repitiéndose el proceso una y otra vez de forma progresiva en todas las direcciones de la superficie del líquido, lo que se traduce en el movimiento de avance de ondas circulares.

Como puede deducirse del mecanismo de propagación descrito, las propiedades del medio influirán decisivamente en las características de las ondas. Así, la velocidad de una onda dependerá de la rapidez con la que cada partícula del medio sea capaz de transmitir la perturbación a su compañera. Los medios más rígidos dan lugar a velocidades mayores que los más flexibles. En un muelle de baja constante elástica k una onda se propagará más despacio que en otra que tenga una k mayor. Lo mismo sucede con los medios más densos respecto de los menos densos.

Ningún medio material es perfectamente elástico. Las partículas que lo forman en mayor o menor grado rozan entre sí, de modo que parte de la energía que se transmite de unas a otras se disipan en forma de calor. Esta pérdida de energía se traduce, al igual que en el caso de las vibraciones, en una atenuación o amortiguamiento. Sin embargo, el estudio de las ondas en las condiciones más sencillas prescinde de estos efectos indeseables del rozamiento.

Características de las ondas

editar

 

  • LONGITUD DE ONDA mecanica

Es la distancia entre una cresta y otra o valles consecutivos.

Parámetro físico que indica el tamaño de una onda. Si se representa la onda como una serie de crestas regulares (una línea ondulada), la longitud de onda sería la distancia entre dos crestas consecutivas. Se representa con la letra griega l (lambda)

En espectroscopia, la longitud de onda es el parámetro usado para definir el tipo de radiación electromagnética, y se mide usualmente en nanómetros. Una longitud de onda corta indica que la radiación es muy energética, y viceversa. Por ejemplo, la longitud de onda de la radiación ultravioleta de una lámpara de las usadas para comprobar billetes es de 254 nanómetros, mientras que la longitud de onda de la radiación infrarroja emitida por una bombilla es de unos 700 nanómetros.

Es la distancia entre dos puntos iguales correspondientes a dos ondas sucesivas. La longitud de onda esta relacionada con la frecuencia V de la onda mediante la formula:

Se expresa en unidades de longitud; metros, centímetros, kilómetros y las longitudes de onda de la luz son de orden de millonésimas de metro (micrometros)

  • NODO

Es el punto donde la onda cruza la línea de equilibrio.

  • OSCILACIÓN

Se lleva a cabo cuando un punto en vibración ha tomado todos los valores positivos y negativos.

Son los puntos medios que están entre las crestas y los valles en la línea central de los desplazamientos.

  • ELONGACIÓN

Es la distancia en forma perpendicular de un punto de la onda a la línea o posición de equilibrio.

  • AMPLITUD

Es la distancia entre el punto extremo que alcanza una partícula vibrante y su posición de equilibrio. La amplitud es la máxima elongación.

La amplitud de onda está directamente relacionada con la intensidad de la onda, la amplitud es el ancho de onda, es decir, la distancia que separa a dos crestas o dos valles sucesivos.

  • FRECUENCIA:

Es el número de veces que se representa un fenómeno periódico en la unidad de tiempo, es decir, el número de ondas que pasan por segundo. La unidad en la que se mide la frecuencia es el hertz (Hz) en honor a Heinrich Hertz, quien demostró la existencia de las ondas de radio en 1886. Y se calcula como ciclos entre segundos, es decir, el número de veces por segundo que ocurre algún fenómeno.

1 Hz = 1/s

Una vibración por segundo corresponde a una frecuencia de 1 hertz; dos vibraciones por segundo equivalen a 2 hertz, y así sucesivamente. Las grandes frecuencia se miden en kilohertz (kHz) y las frecuencias aún más elevadas en megahetz (MHz). Las ondas de radio de amplitud modulada se transmiten en kilohertz, mientras que las ondas de frecuencia modulada se transmiten en megahertz.

Por ejemplo, una estación ubicada en la posición correspondiente a 960 kHz en la banda de AM emite ondas de radio cuya frecuencia es de 960 000 vibraciones por segundo. Una estación ubicada en la posición de 101 MHz de la banda de FM emite ondas de radio cuya frecuencia es de 101 000 000 hertz. La frecuencia con que vibra la fuente y la frecuencia de las ondas que produce son iguales.

  • PERIODO:

Tiempo que tarda un cuerpo que tiene un movimiento periódico –el cual el cuerpo se mueve de un lado a otro, sobre una trayectoria fija-en efectuar un ciclo completo de su movimiento. Su unidad, oscilación, onda, ciclo, vibración, segundo.

RELACIÓN ENTRE FRECUENCIA Y PERIODO

Por ejemplo, un centro emisor produce una onda en ½ segundo, o sea su periodo es de T= ½ segundo y su frecuencia, f, será 2 ondas/segundo.

Lo que significa que f y T son reciprocas, es decir:  

  • VELOCIDAD DE PROPAGACIÓN

Desplazamiento de una onda en una unidad de tiempo, es decir, habrá realizado una oscilación completa cuando la onda se haya desplazado una longitud de onda. Si el periodo (T) es el tiempo en que el punto considerado tarda en realizar una oscilación, podemos decir que la onda ha avanzado una distancia   en un tiempo, es decir:  , pero como el periodo T es igual a 1/f, la expresión anterior también podemos expresarla de la siguiente manera:  .


Velocidad de propagación es igual al valor de la longitud de onda entre el periodo. Sus unidades son, cm/s, m/s.


La velocidad con que se propague un fenómeno ondulatorio depende de la naturaleza del medio en que se realiza la propagación. Así, la velocidad del sonido no es la misma en el aire que en el agua o que en el acero, ni tampoco la velocidad de la luz en la misma en el vació que en el agua, aire o vidrio. La velocidad de la luz en el vació es igual a 300 000 km/s y es la máxima velocidad que se puede alcanzar en la naturaleza.


Las ondas sonoras por ejemplo, viajan con rapidez de 330 o 350 m/s en el aire (dependiendo la temperatura) y unas cuatro veces mas aprisa en el agua. Cual sea el medio, la rapidez de una onda esta relacionada con su frecuencia y su longitud de onda.

  • VALLE

La parte inferior de una onda

  • CRESTA

La parte superior de una onda

Tipos de ondas

editar

Dimensiones en que se propaga la onda:

  • Unidimensionales.
  • Bidimensionales.
  • Tridimensionales.
  • Cuadimensionales.

Según la dirección de oscilación:

  • Longitudinales: la dirección de oscilación y de propagación coinciden (sonido).
  • Transversales: las direcciones de vibración y propagación son perpendiculares.

Una onda elástica es una perturbación tensional que se propaga a lo largo de un medio elástico. Por ejemplo las ondas sísmicas ocasionan temblores que pueden tratarse como ondas elásticas que se propagan por el terreno.

Tipos de ondas:

  • Onda plana

En general una onda elástica puede ser una combinación de ondas longitudinales y de ondas transversales. Una manera simple de demostrar esto considerar la propagación de ondas planas en las que el vector de desplazamientos provocados por el paso de la onda tiene la forma u = u(x,t)

  • Ondas P y S

Una descomposición más general de una onda elástica sirve como ecuación de onda es la descomposición de Helmholtz para campos vectoriales, en una componente longitudinal a lo largo de la dirección del recorrido de la propagación y una onda transversal a la misma. Estas dos componentes se llaman usualmente componente P (onda P o primaria) y componente S (onda S o secundaria).

  • Ondas de Rayleigh

Las ondas de Rayleigh son ondas superficiales elípticas, que son una solución de la ecuación de la forma vectorial, cuya amplitud disminuye exponencialmente con la profundidad. Un modelo simple de ondas de Rayleigh es que se da en un medio elástico semi-infinito, que podría representar el terreno.

  • Ondas de Love

Las ondas de Love son ondas superficiales, que requieren la existencia de una capa superficial con propiedades mecánicas ligeramente diferente de las capas más profundas.

Ondas longitudinales

editar

Una onda longitudinal es aquella en la que el movimiento de las partículas del medio es paralelo a la dirección de propagación de la onda. Las ondas longitudinales reciben también el nombre de ondas de presión u ondas de compresión. Algunos ejemplos que hay de ondas longitudinales son el sonido y las ondas sísmicas de tipo P generadas en un terremoto.

Si imaginamos un foco puntual generador del sonido, los frentes de onda se desplazan alejándose del foco, transmitiendo el sonido a través del medio de propagación, por ejemplo:el aire.

Por otro lado, cada partícula de un frente de onda cualquiera oscila en dirección de la propagación, esto es, inicialmente es empujada en la dirección de propagación por efecto del incremento de presión provocado por el foco, retornando a su posición anterior por efecto de la disminución de presión provocada por su desplazamiento. De este modo, las consecutivas capas de aire (frentes) se van empujando unas a otras transmitiendo el sonido.

Ondas transversales

editar

Las ondas transversales son las cuales las partículas del medio en que se propagan se mueven transversalmente a la dirección de propagación de la onda. Un ejemplo de ello son las ondas circulares en el agua, ya que se mueven describiendo todas las direcciones del plano sobre la superficie del agua, pero las partículas suben y bajan, no se trasladan según las direcciones que dibujan sobre el eje horizontal. Al igual que las ondas electromagnéticas, no se desplazan en sentido vectorial dentro del medio según las direcciones de propagación. Dicho de otra forma, los campos eléctrico y magnético oscilan perpendicularmente a la dirección de la propagación, es decir, transversalmente. Así, de acuerdo con el movimiento de las partículas del medio podemos decir que en las ondas transversales las partículas del medio vibran perpendicularmente a la dirección de propagación de la onda.

Lo mismo sucede en el caso de una cuerda; cada punto vibra en vertical, pero la perturbación avanza según la dirección de la línea horizontal. Las variaciones en el desplazamiento de los puntos de una cuerda tensa constituyen una onda típicamente transversal. La mal llamada "ola" que se hace en los estadios de fútbol es prácticamente una onda transversal, dado que la gente no se "mueve" de sus asientos (se mueve, pero levantándose y sentándose, no cambiándose a la silla de al lado). Cuando observamos este tipo de festejo deportivo vemos que la masa que forma el público dibuja un movimiento también en sentido horizontal, como si de una serpiente se tratara; ésa es la dirección de propagación de la onda.

Introducción

editar

Una onda estacionaria es una perturbación que cumple la función de onda teniendo la particularidad de que no transmite momento ni energía. Recuerdese que la ecuación de onda unidimensional viene dada por:

 

La solución general puede escribirse como la suma de dos perturbaciones que se desplazan en sentidos opuestos:

 

Una onda estacionaria viene dada precisamente por la suma de dos perturbaciones iguales que se desplazan en sentidos opuestos. Como producto de tal interferencia se producen puntos en los que la perturbación se anula para todo instante denominados nodos.

Tratamiento matemático

editar

Caso unidimensional

editar

En este apartado analizaremos el caso de una onda estacionaria armónica en un medio unidimensional. Para empezar emplearemos la solución de la ecuación de ondas obtenida por separación de variables.

 

La anterior solución puede verificarse por simple sustitución en la ecuación de ondas. Supondremos que la onda está confinada en la región del espacio [0,a] de modo que  . Supondremos además que la onda es armónica de modo que nos restringiremos un solo valor de k.

 

Aplicando las condiciones mencionadas obtenemos

 
 

Caso bidimensional

editar

A continuación se estudiará el caso de una onda estacionaria bidimensional armónica confinada en un rectagulo de lados a y b. Análogamente al caso unidimensional la ecuación de ondas en coordenadas rectangulares tendrá la forma:

 

La solución será analogamente:

 

La onda esta confinada en un rectangulo de lados a y b de modo que han de cumplirse las condiciones  . Si a estas condiciones imponemos que en cada coordenado dispogamos de un modo propio obtenemos:

 
 

Ejemplos

editar

Las ondas estacionarias puuedes presentarse en vibraciones unidimensionales, bidimensionales y tridimensionales.

Ondas estacionarias unidimensionales

editar

Si atas una cuerda a un muro y agitas el extremo libre de arriba abajo producirás una onda en la cuerda. El muro es demasiado rígido para agitarse, de modo que la onda se refleja y vuelve hacia ti desplazándose por la cuerda. Agitando la cuerda de cierta manera puedes hacer que la onda incidente (es decir, la onda original) y la onda reflejada formen una onda estacionaria en la que ciertos puntos de la cuerda llamamos nodos permanecen inmóviles. Los puntos de mayor amplitud de una onda estacionaria se conocen como antinodos. Los antinodos están en los puntos medios entre dos nodos.

Las ondas estacionarias son producto de la interferencia. Cuando dos ondas de la misma amplitud y longitud de onda pasan una sobre otra en direcciones contrarias, están siempre fuera de fase en los nodos. Los nodos son regiones estables de interferencia destructiva.

Ondas estacionarias bidimensionales

editar

Cada uno de los modos normales de vibracion de una superficie constituye también una onda estacionaria. De este modo podemos observar ondas estacionarias en la superficie del agua o en la tela de un tambor (si despreciamos los efectos producidos por la atenuación).

 
Longitud de onda.

Examinado en detalle la figura adyacente, observamos que la distancia entre dos picos (valles) adyacentes es la misma con independencia de cuales sean los picos (valles) escogidos. Esta distancia en la onda idealizada representada como  , es la longitud de onda.

En general, la longitud de onda es la distacia de separación entre puntos adyacente en fase (dos puntos están en fase cuando están separados por un número entero de ciclos de onda completos).

Referencias

editar
  • FHSST Authors (agosto de 2005). The Free High School Science Texts: A Textbook for High School Students Studying Physics.. 

http://savannah.nongnu.org/projects/fhsst Las propiedades de las ondas se manifiestan a través de una serie de fenómenos que constituyen lo esencial del comportamiento ondulatorio. Así, las ondas rebotan ante una barrera, cambian de dirección cuando pasan de un medio a otro, suman sus efectos de una forma muy especial y pueden salvar obstáculos o bordear las esquinas.

El estudio de los fenómenos ondulatorios supone la utilización de conceptos tales como periodo, frecuencia, longitud de onda y amplitud, y junto a ellos el de frente de onda, el cual es característico de las ondas bi y tridimensionales.

Se denomina frente de ondas al lugar geométrico de los puntos del medio que son alcanzados en un mismo instante por la perturbación.

Las ondas que se producen en la superficie de un lago, como consecuencia de una vibración producida en uno de sus puntos, poseen frentes de onda circulares. Cada uno de esos frentes se corresponde con un conjunto de puntos del medio que están en el mismo estado de vibración, es decir a igual altura. Debido a que las propiedades del medio, tales como densidad o elasticidad, son las mismas en todas las direcciones, la perturbación avanza desde el foco a igual velocidad a lo largo de cada una de ellas, lo que explica la forma circular y, por tanto, equidistante del foco, de esa línea que contiene a los puntos que se encuentran en el mismo estado de vibración.

Las ondas tridimensionales, como las producidas por un globo esférico que se infla y desinfla alternativamente, poseen frentes de ondas esféricos si el foco es puntual y si el medio, como en el caso anterior, es homogéneo. En física, la interferencia es un fenómeno en el que dos o más ondas se superponen para formar una onda resultante de mayor, menor o igual amplitud. El efecto de interferencia puede ser observado en todos los tipos de onda, como ondas de luz, radio, sonido, entre otros. La ecuación de la onda resultante es la suma algebraica de las funciones de las ondas que se están superponiendo. Se denomina pulsación u oscilación a una variación, perturbación o fluctuación en el tiempo de un medio o sistema. En física, química e ingeniería es el movimiento repetido en torno a una posición central, o posición de equilibrio. Más específicamente que totalmente existe y aparte de todo se suele hablar de vibración cuando la oscilación tiene lugar en un sólido. Este fenómeno de vaivén tan habitual y con orígenes tan dispares, es fácil de reconocer por ejemplo, en el movimiento de un columpio, el péndulo de un reloj, el movimiento de la lengüeta de un instrumento musical de viento o en la forma rizada de la superficie del agua como consecuencia de las ondas que se generan en ella. Se dice que un sistema físico (mecánico, eléctrico, luminoso, etc.) oscila cuando algunos parámetros representativos del mismo (tiempo, posición, velocidad, intensidad eléctrica, tensión eléctrica, elongación, ángulo de giro, intensidad luminosa, etc...) adquieren unos valores que se van repitiendo periódicamente. La explicación de los fenómenos ondulatorios puede hacerse de forma sencilla sobre la base de un principio propuesto por Christian Huygens (1629−1695) para ondas luminosas, pero que es aplicable a cualquier tipo de ondas. La observación de que las ondas en la superficie del agua se propagaran de una forma gradual y progresiva suscitó en Huygens la idea de que la perturbación en un instante posterior debería ser producida por la perturbación en otro anterior. Este fue el germen del siguiente principio general de propagación de las ondas que lleva su nombre:

Cada uno de los puntos de un frente de ondas puede ser considerado como un nuevo foco emisor de ondas secundarias que avanzan en el sentido de la perturbación y cuya envolvente en un instante posterior constituye el nuevo frente.

La aplicación del principio de Huygens se lleva a efecto mediante un método puramente geométrico conocido como método de construcción de Huygens. En el caso de una onda bidimensional circular producida por un foco o fuente puntual la aplicación de este método sería como sigue.

Si S es el frente de ondas correspondiente a un instante cualquiera t, según el principio de Huygens, cada punto de S se comporta como un emisor de ondas secundarias también circulares. Al cabo de un intervalo de tiempo t los nuevos frentes formarán una familia de circunferencias Si, con sus centros situados en cada uno de los puntos de S y cuyo radio r = v • Dt será el mismo para todas ellas si la velocidad v de propagación es igual en cualquier dirección. La línea S' tangente a todos los frentes secundarios Si y que los envuelve resulta ser otra circunferencia y constituye el nuevo frente de ondas para ese instante posterior

  La reflexión es el cambio de dirección de una onda al entrar en contacto con la superficie (interfaz) que separa dos medios diferentes. Algunos ejemplos comunes son la reflexión de la luz, el sonido y las ondas de agua. La ley de la reflexión dice que para la reflexión especular (por ejemplo en un espejo) el ángulo con el que la onda incide en la superficie es igual al ángulo con el que se refleja.

La refracción es el cambio de dirección y velocidad que experimenta una onda de luz al pasar de un medio a otro, ya sea líquido o gaseoso, con distinto índice refractivo. Solo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si estos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad de propagación de la onda señalada. {{:Física/Vibraciones mecánicas/Efecto Doppler|Efecto Doppler]]

Oscilacion armónica libre

editar

Decimos que una partícula está sometida a un potencial armónico unidimensional cuando este es de la forma:

 

O dicho de otro modo, cuando la fuerza a la que está sometido es del tipo:

 

Si planteamos la ecuación del movimiento   tenemos que:

 

La solución de la ecuación diferencial es por tanto:

 

Redefiniendo variables:

 

siendo

 

Oscilación armónica amortiguada

editar

A continuación estudiaremos el caso de una partícula sometida a un potencial armónico y que sufre una fuerza de rozamiento proporcional a la velocidad.

La fuerza de rozamiento es de la forma:

 

La ecuación de movimiento queda por tanto:

 

La solución en este caso es:

 

siendo

 

A continuación analizaremos el movimiento resultante en función del signo del anterior discriminante:

Oscilador con amortiguamiento débil

editar

Suponiendo la condición de que  , definimos:

 

En este caso la solución de la ecuación de movimiento toma la forma:

 

Redefiniendo variables:

 

Por tanto, la solución es un movimiento oscilante en torno a la posición de equilibrio cuya amplitud disminuye a medida que transcurre el tiempo.

Oscilación armónica amortiguada y forzada

editar

Vibraciones Acopladas

editar

Las vibraciones acopladas se refieren al fenómeno en el que dos o más sistemas vibrantes interactúan entre sí, lo que resulta en un comportamiento vibratorio complejo. Esta interacción puede manifestarse de diversas maneras, como la transferencia de energía entre los sistemas o la modificación de las frecuencias naturales de vibración. Algunos ejemplos de vibraciones acopladas incluyen:

Vibraciones Forzadas:

editar

Cuando un sistema vibrante transfiere energía a otro sistema cercano, causando que este último vibre a una frecuencia específica.

Resonancia:

editar

Dos sistemas vibrantes pueden influenciarse mutuamente, lo que resulta en una amplificación de la amplitud de las vibraciones en ciertas condiciones.

Modos Normales de Vibración Acoplada:

editar

En sistemas complejos, las vibraciones de los componentes individuales pueden combinarse para formar modos de vibración acoplada, que tienen frecuencias y formas específicas.


El estudio de las vibraciones acopladas es importante en campos como la ingeniería estructural, la física y la acústica, ya que permite comprender y predecir el comportamiento de sistemas complejos en los que interactúan múltiples vibraciones.