Física/Fenómenos superficiales de los líquidos/Texto completo

Sección 1: Fuerzas de cohesión editar

Fuerzas intermoleculares editar

Las fuerzas intermoleculares o Cohesión intermolecular son fuerzas electromagnéticas las cuales actúan entre moléculas o entre regiones ampliamente distantes de una macromolécula.

La cohesión es distinta de la adhesión; la cohesión es la fuerza de atracción entre partículas adyacentes dentro de un mismo cuerpo, mientras que la adhesión es la interacción entre las superficies de distintos cuerpos.

En los gases, la fuerza de cohesión puede observarse en su licuefacción, que tiene lugar al comprimir una serie de moléculas y producirse fuerzas de atracción suficientemente altas para proporcionar una estructura líquida.

En los líquidos, la cohesión se refleja en la tensión superficial, causada por una fuerza no equilibrada hacia el interior del líquido que actúa sobre las moléculas superficiales, y también en la transformación de un líquido en sólido cuando se comprimen las moléculas lo suficiente.

En los sólidos, la cohesión depende de cómo estén distribuidos los átomos, las moléculas y los iones, lo que a su vez depende del estado de equilibrio (o desequilibrio) de las partículas atómicas. Muchos compuestos orgánicos, por ejemplo, forman cristales moleculares, en los que los átomos están fuertemente unidos dentro de las moléculas, pero éstas se encuentran poco unidas entre sí.

Interreacciones iónicas editar

Son interacciones que ocurren a nivel de catión-anión, entre distintas moléculas cargadas, y que por lo mismo tenderán a formar una unión electrostática entre los extremos de cargas opuestas, lo que dependerá en gran medida de la electronegatividad de los elementos constitutivos. Un ejemplo claro de esto, es por ejemplo lo que ocurre entre los extremos Carboxilo   y Amino   de un amioacido, peptido, polipeptido u proteína con otra.

Fuerzas ion-dipolo editar

Estas son interacciones que ocurren entre especies con carga. Las cargas similares se repelen, mientras que las opuestas se atraen. Es la fuerza que existe entre un ion y una molécula polar neutra que posee un momento dipolar permanente, las moléculas polares son dipolos tienen un extremo positivo y un extremo negativo. Los iones positivos son atraídos al extremo negativo de un dipolo, en tanto que los iones negativos son atraídos al extremo positivo.

La magnitud de la energía de la interacción depende de la carga sobre el ion (Q), el momento dipolar del dipolo (µ), y de la distancia del centro del ion al punto medio del dipolo (d).

Las fuerzas ion-dipolo son importantes en las soluciones de las sustancias iónicas en líquidos.

Puente de Hidrógeno editar

El puente de hidrógeno ocurre cuando un átomo de hidrógeno es enlazado a un átomo fuertemente electronegativo como el nitrógeno, el oxígeno o el flúor. El átomo de hidrógeno posee una carga positiva parcial y puede interactuar con otros átomos electronegativos en otra molécula (nuevamente, con N, O o F). Asi mismo, se produce un cierto solapamiento entre el H y el átomo con que se enlaza (N,O o F) dado el pequeño tamaño de estas especies, siendo por tanto mayor el solapamiento cuanto menor sea el tamaño del átomo con que interacciona el H. Por otra parte, cuanto mayor sea la diferencia de electronegatividad entre el H y el átomo interactuante, más fuerte será el enlace. Fruto de estos presupuestos obtenemos un orden creciente de intensidad del enlace de hidrógeno: el formado con el F será de mayor intensidad que el formado con el O, y éste a su vez será más intenso que el formado con el N. Estos fenómenos resultan en una interacción estabilizante que mantiene ambas moléculas unidas. Un ejemplo claro del puente de hidrógeno es el agua:

Los enlaces de hidrógeno se encuentran en toda la naturaleza. Proveen al agua de sus propiedades particulares, las cuales permiten el desarrollo de la vida en la Tierra. Los enlaces de hidrógeno proveen también la fuerza intermolecular que mantiene unidas ambas hebras en una molécula de ADN.

Atracciones dipolo-dipolo editar

Las atracciones dipolo-dipolo, también conocidas como Keeson, por Willem Hendrik Keesom, quien produjo su primera descripción matemática en 1921, son las fuerzas que ocurren entre dos moléculas con dipolos permanentes. Estas funcionan de forma similar a las interacciones iónicas, pero son más débiles debido a que poseen solamente cargas parciales. Un ejemplo de esto puede ser visto en el ácido clorhídrico:

(+)(-)  (+)(-)
 H-Cl----H-Cl
(-)(+)  (-)(+)
 Cl-H----Cl-H

Fuerza de Van der Waals editar

También conocidas como fuerzas de isperción, de London o fuerzas dipolo-transitivas, éstas involucran la atracción entre dipolos temporalmente inducidos en moléculas no polares. Esta polarización puede ser inducida tanto por una molécula polar o por la repulsión de nubes electrónicas con cargas negativas en moléculas no polares. Un ejemplo del primer caso es el cloro disuelto por que son puras puntas (-) (+)

[dipolo permanente] H-O-H----Cl-Cl [dipolo transitivo]


Un ejemplo del segundo caso se encuentra en la molécula de cloro:


                   (+) (-)  (+) (-)
[dipolo transitivo] Cl-Cl----Cl-Cl [dipolo transitivo]

Sección 2: Tensión superficial editar

 
Ejemplo de tensión superficial: una aguja de acero flotando en agua.

[cuando uno esta enfermo .

La tensión superficial tiene como principal efecto la tendencia del líquido a disminuir en lo posible su superficie para un volumen dado, de aquí que un líquido en ausencia de gravedad adopte la forma esférica, que es la que tiene menor relación área/volumen.

Energéticamente, las moléculas situadas en la superficie tiene una mayor energía promedio que las situadas en el interior, por lo tanto la tendencia del sistema será a disminuir la energía total, y ello se logra disminuyendo el número de moléculas situadas en la superficie, de ahí la reducción de área hasta el mínimo posible.

Propiedades editar

 
La tensión superficial puede afectar a objetos de mayor tamaño impidiendo, por ejemplo, el hundimiento de una flor.

La tensión superficial suele representarse mediante la letra γ. Sus unidades son de N·m-1=J·m-2.

Algunas propiedades de γ:

  • γ > 0, ya que para aumentar el área del líquido en contacto hace falta llevar más moléculas a la superficie, con lo cual aumenta la energía del sistema y γ es  , o la cantidad de trabajo necesario para llevar una molécula a la superficie.
  • γ = 0 en el punto crítico, ya que las densidades del líquido y del vapor se igualan, por lo que según la Teoria del Gradiente de Densidades (DGT, en inglés) propuesta por van der Waals (1894),la tensión superficial en el punto crítico debe ser cero.
  • γ depende de la naturaleza de las dos fases puestas en contacto que, en general, será un líquido y un sólido. Así, la tensión superficial será diferente por ejemplo para agua en contacto con su vapor, agua en contacto con un gas inerte o agua en contacto con un sólido, al cual podrá mojar o no debido a las diferencias entre las fuerzas cohesivas (dentro del líquido) y las adhesivas (líquido-superficie).
  • γ se puede interpretar como un fuerza por unidad de longitud (se mide en N·m-1). Esto puede ilustrarse considerando un sistema bifásico confinado por un pistón móvil, en particular dos líquidos con distinta tensión superficial, como podría ser el agua y el hexano. En este caso el líquido con mayor tensión superficial (agua) tenderá a disminuir su superficie a costa de aumentar la del hexano, de menor tensión superficial, lo cual se traduce en una fuerza neta que mueve el pistón desde el hexano hacia el agua.
  • El valor de γ depende de la magnitud de las fuerzas intermoleculares en el seno del líquido. De esta forma, cuanto mayor sean las fuerzas de cohesión del líquido, mayor será su tensión superficial. Podemos ilustrar este ejemplo considerando tres líquidos: hexano, agua y mercurio. En el caso del hexano, las fuerzas intermoleculares son de tipo fuerzas de Van der Waals. El agua, aparte de la de Van der Waals tiene interacciones de puente de hidrógeno, de mayor intensidad, y el mercurio está sometido al enlace metálico, la más intensa de las tres. Así, la γ de cada líquido crece del hexano al mercurio.
  • Para un líquido dado, el valor de γ disminuye con la temperatura, debido al aumento de la agitación térmica, lo que redunda en una menor intensidad efectiva de las fuerzas intermoleculares. El valor de γ tiende a cero conforme la temperatura se aproxima a la temperatura crítica Tc del compuesto. En este punto, el líquido es indistinguible del vapor, formándose una fase continua donde no existe una superficie definida entre ambos.

Tensoactividad editar

Se denomina tensoactividad al fenómeno por el cual una sustancia reduce la tensión superficial al disolverse en agua u otra solución acuosa. Su fórmula es 2 Pi*D*Y = F; donde:

-D = Diámetro. -Y = Tensión Superficial -F = Fuerza

Sección 3: Capilaridad editar

 
Efectos de capilaridad

La capilaridad es la cualidad que posee una sustancia de absorber a otra. Sucede cuando las fuerzas intermoleculares adhesivas entre el líquido y el sólido son mayores que las fuerzas intermoleculares cohesivas del líquido. Esto causa que el menisco tenga una forma cóncava cuando el líquido está en contacto con una superficie vertical. En el caso del tubo delgado, éste succiona un líquido incluso en contra de la fuerza de gravedad. Este es el mismo efecto que causa que materiales porosos absorban líquidos.

Un aparato comúnmente empleado para demostrar la capilaridad es el tubo capilar; cuando la parte inferior de un tubo de vidrio se coloca verticalmente, en contacto con un líquido como el agua, se forma un menisco cóncavo; la tensión superficial succiona la columna líquida hacia arriba hasta que el peso del líquido sea suficiente para que la fuerza de la gravedad se equilibre con las fuerzas intermoleculares.

El peso de la columna líquida es proporcional al cuadrado del diámetro del tubo, por lo que un tubo angosto succionará el líquido más arriba que un tubo ancho. Así, un tubo de vidrio de 0,1 mm de diámetro levantará una columna de agua de 30 cm. Cuanto más pequeño es el diámetro del tubo capilar mayor será la presión capilar y la altura alcanzada. En capilares de 1 µm (micrómetro) de radio con una presión de succión 1,5*103hPa (hectopascal = hPa = 1,5atm), corresponde a una altura de columna de agua de 14 a 15 m.

Dos placas de vidrio que están separadas por una película de agua de 1 µm (micrómetro) de espesor, se mantienen unidas por una presión de succión de 1,5 atm. Por ello se rompen los portaobjetos humedecidos, cuando se trata de separalos.

Entre algunos materiales, como el mercurio y el vidrio, las fuerzas intermoleculares del líquido exceden a las existentes entre el líquido y el sólido, por lo que se forma un menisco convexo y la capilaridad trabaja en sentido inverso.

Las plantas usan la capilaridad para succionar agua a del entorno, aunque las plantas más grandes requieren la transpiración para mover la cantidad necesaria de agua allí donde se precise.

Ley de Jurin editar

La ley de Jurin define la altura que se alcanza cuando se equilibra el peso de la columna de líquido y la fuerza de ascensión por capilaridad.

La altura h en metros de una columna líquida está dada por:

 

donde:

T = tensión superficial interfacial (N/m)
θ = ángulo de contacto
ρ = densidad del líquido (kg/m³)
g = aceleración debido a la gravedad (m/s²)
r = radio del tubo (m)

Para un tubo de vidrio en el aire a nivel del mar y lleno de agua,

T = 0,0728 N/m a 20 &degC
θ = 20°
ρ = 1000 kg/m³
g = 9,80665 m/s²

entonces la altura de la columna está dada por:

 .

Sección 4: Influencia de la curvatura de la superficie editar

Plantilla:Física/Fenómenos superficiales de los líquidos/Influencia de la curvatura de la superficie

Sección 5: Adherencia sólido - líquido. Ángulo de contacto editar

 
Fuerzas de contacto entre sólido y líquido mostrando un ángulo de contacto mayor de 90° (izquierda) y menos de 90° (derecha)

Las interacciones moleculares entre un sólido y un líquido hacen que en general el ángulo de contacto entre ellos no sea siempre el mismo. Dicho ángulo de contacto se define como el ángulo que forma la tangente de la superficie del líquido con la superficie sólida. Cuando las fuerzas de adherencia entre el sólido y el líquido son menores que las internas del líquido, en cuyo caso el ángulo de contacto es mayor de 90º y se dice que el líquido no moja. En caso contrario el ángulo de contacto es menor de 90º y se dice que el líquido moja.