Física/El estado gaseoso/Gases reales

Ecuación de van der Waals editar

La ecuación de estado del gas ideal no es del todo correcta: los gases reales no se comportan exactamente así. En algunos casos, la desviación puede ser muy grande. Por ejemplo, un gas ideal nunca podría convertirse en líquido o sólido por mucho que se enfriara o comprimiera. Por eso se han propuesto modificaciones de la ley de los gases ideales, pV = nRT. Una de ellas, muy conocida y particularmente útil, es la ecuación de estado de van der Waals

 

donde  , y   y   son parámetros ajustables determinados a partir de medidas experimentales en gases reales. Son parámetros de la sustancia y no constantes universales, puesto que sus valores varían de un gas a otro. La ecuación de van der Waals también tiene una interpretación microscópica. Las moléculas interaccionan entre sí. La interacción es muy repulsiva a corta distancia, se hace ligeramente atractiva a distancias intermedias y desaparece a distancias más grandes. La ley de los gases ideales debe corregirse para considerar las fuerzas atractivas y repulsivas. Por ejemplo, la repulsión mutua entre moléculas tiene el efecto de excluir a las moléculas vecinas de una cierta zona alrededor de cada molécula. Así, una parte del espacio total deja de estar disponible para las moléculas en su movimiento aleatorio. En la ecuación de estado, se hace necesario restar este volumen de exclusión ( ) del volumen del recipiente; de ahí el término  .

Transiciones de fase editar

A temperaturas bajas (a las que el movimiento molecular se hace menor) y presiones altas o volúmenes reducidos (que disminuyen el espacio entre las moléculas), las moléculas de un gas pasan a ser influidas por la fuerza de atracción de las otras moléculas. Bajo determinadas condiciones críticas, todo el sistema entra en un estado ligado de alta densidad y adquiere una superficie límite. Esto implica la entrada en el estado líquido. El proceso se conoce como transición de fase o cambio de estado. La ecuación de van der Waals permite estas transiciones de fase, y también describe una región de coexistencia entre ambas fases que termina en un punto crítico, por encima del cual no existen diferencias físicas entre los estados gaseoso y líquido. Estos fenómenos coinciden con las observaciones experimentales. En la práctica se emplean ecuaciones más complejas que la ecuación de van der Waals.

La mejor comprensión de las propiedades de los gases ha llevado a la explotación a gran escala de los principios de la física, química e ingeniería en aplicaciones industriales y de consumo.