Física/Campo gravitatorio/Energía potencial en un campo gravitatorio
Ley de la Gravitación Universal de Newton
editarLa Ley de la Gravitación Universal de Newton establece que la fuerza que ejerce una partícula puntual con masa sobre otra con masa es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia que las separa:
donde es el vector unitario que va de la partícula 1 a la 2, y donde es la Constante de gravitación universal, siendo su valor 6,67 × 10–11 Nm2/kg2.
Trabajo realizado por la gravedad
editarDe la definición de trabajo se puede calcular el trabajo ejercido por la fuerza gravitatoria de atracción de dos masas. Para ello realizaremos la integral a lo largo de la línea que une los centros de ambas masas
La Gravedad como fuerza conservativa
editarSe entiende que una fuerza es conservativa cuando el trabajo realizado por la misma entre dos puntos cualesquiera, no depende de la trayectoria seguida.
Para que una fuerza sea conservativa ha de poder escribirse como el gradiente de un escalar. Para demostralo supongamos que sea posible, entonces
Si para obtener el trabajo a lo largo de una trayectoria cualquiera integramos la expresión anterior obtenemos
es decir el resultado depende unicamente de la posición inicial y final y por tanto es conservativa.
Para la gravedad si recordamos el resultado para una trayectoria particular podremos ver una posible forma el potencial de la fuerza gravitatoria
si calculamos el gradiente recuperamos la ley de la gravitación de Newton
La forma más fácil de calcular el gradiente anterior es hacerlo en coordenada cilíndricas
Aplicandolo al inverso de r obtenemos
con lo que se recupera la expresión de la fuerza gravitatoria de partida