Diferencia entre revisiones de «Curso de alemán nivel medio con audio/Lección 225c»

Contenido eliminado Contenido añadido
Sin resumen de edición
Línea 26:
:und zu beweisen war.
:Außerdem ist jedes schiefwinklige Parallelogramm flächengleich mit einem rechtwinkligen mit derselben Grundlinie und Höhe, was aus Kongruenz von Dreieck BCC' mit Dreieck ADD' folgt (SWS-Satz; <math>h \equiv h</math>, <math>AD \equiv BC</math>, <math>\sphericalangle CBC' \equiv \sphericalangle D'AD</math> als Parallelwinkel).
:Schließlich sind in jedem schiefwinkligen Parallelogramm je zwei gegenüberliegende Winkel gleich groß, was ohne weiters aus den Transversalensätzen folgt. Diese Beziehungen sind sämtlich umkehrbar. Daraus ergibt sich sofort ein interessanter Übergang zum Rechteck. Es genügt nämlich in einem Parallelogramm, daß ein einziger Winkel ein rechter ist, um das Parallelogramm zum Rechteck zu machen. Denn dann muß ja auch der gegenüberliegende Winkel ein rechter sein, dann ist aber die halbe Winkelsumme des Vierecks, nämlich 180° verbraucht. Die anderen zwei Winkel müssen also auch zusammen 180° aber überdies einander gleich sein. Woraus folgt, daß jeder dieser Winkel ein rechter ist, was zu beweisen war. Natürlich gelten alle Sätze über das schiefwinklige Parallelogramm (auch „Rhomboid“ genannt) ebenso für den Sonderfall des Rechtecks (oder des Oblongum). Dazu kommt noch die Eigenschaft, daß die Diagonalen im Rechteck gleich lang sind, was aus der Kongruenz der Dreiecke ABC und ABD hervorgeht, die wir wohl nicht mehr näher zu begründen brauchen. Ein Rechteck muß. stets ein Kreisviereck sein, da einander erstens zwei gegenüberliegende Winkel auf 180° ergänzen, was schon Beweis genug wäre. Zudem sind aber noch alle vier Diagonalenabschnitte gleich groß, also Radien eines Kreises, der im Diagonalenschnittpunkt den Mittelpunkt hat und alle vier Eckpunkte treffen muß. <br style="clear:both;" />
 
 
[[File:Vom Punkt zur Vierten Dimension Seite 237 picture cutout.jpg|thumb|500 px]]
:Deshalb auch ist etwa <math>\sphericalangle E</math> gleich <math>2 \sphericalangle C</math>, da E der zu C gehörige Zentriwinkel über demselben Bogen ist usw. Dadurch aber könnte man wieder den Satz vom Außenwinkel verifizieren und so fort. Ein Spezialfall des schiefwinkligen Parallelogramms ist das seitengleiche Rhomboid oder der Rhombus (Raute). Dieses hat die Sondereigenschaft, daß in ihm die Diagonalen aufeinander senkrecht stehen und die Winkel halbieren, was eine Folge der Sätze über das gleichschenklige Dreieck ist, da die Diagonalen ja zuerst als Seitensymmetralen auftreten, also auch Höhen- und Winkelsymmetralen sein müssen. Diese Rhombussätze gelten auch aus gleichen Gründen für das Quadrat, das außerdem als spezielles Rechteck gleichlange Diagonalen haben muß. Der Rhombus ist niemals ein Kreisviereck (da er, projektiv gesprochen, ein verzogenes Quadrat,