Diferencia entre revisiones de «Curso de alemán nivel medio con audio/Lección 102c»

Contenido eliminado Contenido añadido
Sin resumen de edición
Sin resumen de edición
Línea 20:
:Nun war aber, noch vor Zenon, ein mächtiger geometriekundiger Philosoph, Anaxagoras, aufgestanden, der dem Stetigkeitsprinzip seine schärfste Formulierung gegeben hatte. Anaxagoras erklärte: „Im Kleinen gibt es kein Kleinstes, sondern es gibt stets noch ein Kleineres ...
:Aber auch im Großen gibt es stets noch etwas, das größer ist.“ Und schon etwa zwanzig Jahre nach der Geburt des Anaxagoras wurde wieder ein Bahnbrecher geboren, Demokritos aus Abdera, aus jener verrufenen Schildbürgerstadt des Altertums, von deren Bewohnern man sich die tollsten und albernsten Geschichten erzählte. Der „Abderite“ Demokrit aber sollte als Stern erster Größe in die Weltgeschichte eingehen. Er war sozusagen der erste Entdecker des Materialismus und hat dem Begriff des Atoms, des letzten unteilbaren kleinsten Teiles, sein erstes und sein bleibendes Bestehen verschafft. Demokrit war auch ein hochrangiger Mathematiker, hatte, wie schon so viele, Ägypten besucht und hat - eine sonderbare Laune der Wissenschaftsgeschichte - gerade auf mathematischem Gebiet eine grundlegende Entdeckung gemacht, die seiner atomistischen Philosophie schnurstracks zuwiderlief. Er bestimmte nämlich als erster das Volumen der Pyramide und des Kegels, indem er diese Gebilde in dünnste Scheiben zerschnitt und ihre Volumen als ein Drittel eines Prismas, bzw. Zylinders von gleicher Grundfläche und gleicher Höhe erklärte. Diese an sich durchaus richtige Erkenntnis ist - und das wollten wir oben sagen - auf atomistischer Grundlage nicht möglich. Es genügen dazu nicht dünne Scheiben, sondern dünnste und wieder noch dünnere Schnitte, sonst erhält man keine glatte Pyramide, sondern eine Stufenpyramide, und keinen glatten Kegel, sondern einen Stufenkegel, den man zu den glatten Gebilden - Prisma und Zylinder - nicht in Beziehung setzen kann. Wie es nun auch immer mit dieser Entdeckung des Demokrit oder mit jener des Anaxagoras ausgesehen haben smag, der als politischer Häftling im Gefängnis zu Athen die erste Kreisquadratur gezeichnet haben soll: sicher ist jedenfalls, daß der Streit der Philosophen um die tiefsten Probleme der Mathematik auf allen Linien entbrannt war. Und hierzu müssen wir jetzt das „Gegenteil eines Mathematikers“, den Skeptiker Zenon aus Elea, herbeirufen, damit er uns in seiner überspitzten, unterhaltlichen Art die Fruchtlosigkeit aller tieferen mathematischen Bemühung klarlege. Zenon war ein Feind der Pythagoreer. Warum, wissen wir nicht. Wir wollen aber annehmen, daß ihn keine persönlichen, sondern rein sachliche Gründe leiteten. Weil er aber ein Feind der Pythagoreer war, mußte er zuerst das Heiligste dieser Schule, den Zahlbegriff, zersetzen. Und er besorgte seinen Angriff äußerst gründlich. Er leugnete nämlich kurzweg die Möglichkeit jeder Vielheit. Eine Vielheit, so schloß er, müsse sich aus Einheiten aufbauen. Eine Einheit, eine solche nämlich, die diesen Namen wirklich verdiene, könne nur dann vorliegen, wenn es sich um Unteilbares handle. Etwas Unteilbares aber dürfe wieder keine Größe besitzen, sonst müßte es teilbar sein. Da somit die Einheit keine Größe habe, sei sie gleichsam ein Nichts. Ein Nichts aber könne man vervielfachen, so weit man wolle, und man erhalte dadurch wieder ein Nichts. Es existiere also keine Vielheit. Man könne aber ebensogut behaupten, die Einheiten seien unendlich groß. Denn wenn das Viele oder die Vielheit existieren solle, dann müßten ihre Teile voneinander entfernt liegen. Daher könnten dazwischen wieder Teile eingeschoben werden, die wieder eine Größe haben müßten, und so fort ins Unendliche. Wie weit man nun auch diesen Prozeß verfolge, gelange man stets wieder zu teilen, zu Einheiten, die eine Größe hätten, somit aus unendlich vielen Teilen beständen, die selber wieder Größe hätten usw. Daher müsse jede Einheit unendlich groß sein, da sie sich aus unendlich vielen, selbst ausgedehnten Teilen zusammensetze. Nicht genug aber an der schauerlichen Tatsache, daß es keine Einheiten und keine Vielheiten, also keine Größen und keine Zahlen gebe, oder daß Einheit und Vielheit jede für sich unendlich groß seien, so gebe es darüber hinaus auch keine Bewegung. Ehe ein abgeschossener Pfeil an seinem Ziele ankommen könne, müsse er vorerst die Halfte des Weges zurücklegen, von dieser Halfte wieder die Halfte und so fort. Entweder nun setze sich jede solche Hälfte aus wirklichen, existierenden Wegstrecken von <math>\frac{1}{4}</math>, <math>\frac{1}{8}</math>, <math>\frac{1}{16}</math>, <math>\frac{1}{32}</math>, usw. des ganzen Weges zusammen, dann sei sie eben die Summe unendlich vieler, wenn auch stets kleiner werdender, doch noch immer wirklicher Wegstrecken. Dann aber brauche der Pfeil schon für die kleinste ins Auge gefaßte Strecke eine unendliche Zeit, bleibe also auf der Bogensehne hängen. Oder aber die Teilstrecken seien nicht weiter teilbar, dann seien sie eben nichts. Und aus einer auch noch so umfassenden Aufsummierung der „Nichtse“ könne nie ein Etwas entstehen. Auch in diesem Falle bleibe der Pfeil auf dem Bogen. Aus ähnlichen Gründen könne auch der schnellfüßige Achilles niemals die Schildkröte einholen, die einmal einen Vorsprung habe, weil, wahrend Achilles den Vorsprung durchlaufe, die Schildkröte einen neuen Vorsprung gewinne, und so fort bis ans Ende der Zeiten, das aber Achilles ebensowenig erlebe wie die Schildkröte.
:Nun war Zenon von Elea ein zu heller Kopf, um auf den Einwurf, daß der Pfeil in Wirklichkeit abfliege, daß die Vielheit tatsachlich existiere und daß Achilles die Schildkröte in wenigen Augenblicken erreicht haben würde, mit dem Jahrtausende spaterspäter geprägten Philosophenwort: „Desto schlimmer für die Tatsachen“ zu antworten. Er wollte vielmehr die ebenso „tatsächlich“ sofort auftretenden Schwierigkeiten in möglichst greller Art beleuchten, die sich der Behauptung eines Anfanges, einer letzten Einheit, eines selbst unteilbaren Teiles entgegenstellen. Daran änderte es auch nichts, daß inzwischen schon Theodoros von Kyrene die Irrationalität aller unendlich vielen Quadratwurzeln, sofern es sich nicht um Wurzeln aus Quadratzahlen handelte, bewiesen hatte.
:Nun haben wir aber schon bei Anaxagoras angedeutet, dieser große Philosoph habe sich mit der Quadratur des Kreises beschäftigt. War das ein herausgegriffenes Einzelproblem oder war es vielmehr eine gleichsam prinzipielle Angelegenheit? Rein chronologisch müßten wir hier schon von den drei großen „klassischen Problemen“ des Hellenentums sprechen, müßten hier schon die Quadratur des Kreises, die Verdoppelung des Würfels und die Dreiteilung des Winkels behandeln. Wir bitten aber für die Erörterung dieser Probleme um Auischub. Wir werden sie im nächsten Kapitel eingehend durchleuchten. In diesem Kapitel müssen wir uns auf andere Probleme beschränken, da sonst die eigentümliche Stellung Euklids nicht zum vollen Ausdruck käme.
:Wir wollen also bloß anmerken, daß auch in dieser Zeit schon manches entstand, das die Taten eines Archimedes und eines Apollonios von Perga vorbereitete. Für Euklids Leistungen dagegen war es am wichtigsten, daß man erkannte, mathematischer Erfindergeist und plastisches Schauen reichten nicht aus, die Mathematik zu der Höhe emporzureißen, die den erleuchtetsten Köpfen als Ideal vorschwebte. Um vollste, echteste Wissenschaft zu werden, mußte sich Mathematik vorübergehend unter philosophische Kontrolle stellen. Diese Kräfteverschiebung hatte vor allem Zenon durch seine maßlosen, aber sehr treffsicheren Angriffe gegen die merkwürdig brüchigen und leicht verwundbaren Fundamente der Mathematik erreicht.
Línea 39:
:Nun wollen wir aber doch des lebendigeren Einblicks wegen die „Elemente“ flüchtig durchblättern. Sie heißen in griechischer Sprache „Stoicheia“ und sind in dreizehn Bücher eingeteilt. An ihrer Spitze steht das weltberühmte euklidische „Axiomensystem“, die Zusammenfassung der sogenannten Erklärungen, Forderungen und Grundsätze. Man hat diese einzelnen Gruppen auch als Definitionen, Postulate und Axiome bezeichnet und viel darüber diskutiert, wodurch sie sich voneinander unterscheiden. Sicherlich sind die Axiome oder Grundsätze nichts anderes als allgemeine oder allgemeingültige oder allen Menschen gemeinsame Einsichten, die nicht bewiesen zu werden brauchen, auch gar nicht bewiesen werden können. Jeder, auch der verwickeltste Beweis muß endlich bei diesen Axiomen als letzten Beweisgründen landen, muß auf sie als letzte Instanzen stoßen. Daß das Ganze größer als sein Teil sei (Axiom 9) oder daß zwei gerade Linien niemals einen Raum (Fläche) einschließen könnten (Axiom 12), muß ebenso jeder mathematischen oder geometrischen Bemühung irgendwie zugrunde liegen Wie etwa die Forderung 2, daß man eine begrenzte gerade Linie stetig gerade verlängern könne und daß es möglich sei, aus jedem Mittelpunkt, mit welchem Radius immer, einen Kreis zu konstruieren (Postulat 3). Ebenso setzt die ganze Geometrie rein definitorisch voraus, daß ein Punkt keine Teile (Definition 1) und eine Linie nur eine Länge ohne Breite besitze (Definition 2) oder daß ein mit seinem Nebenwinkel spiegelbildlich gleicher Winkel ein rechter Winkel sei (Definition 10).
:Aus diesem Minimum von 35 Definitionen, 3 Postulaten und 12 Axiomen [<small>Nach neuester Lesart gibt es 23 Definitionen, 5 Postulate und 8 Axiome, ohne daß diese erschiebung der Einteilung das Wesen der Sache ändert.</small>] nun baut Euklid, wie schon erwähnt, die ganze Mathematik auf, wobei er im späteren Verlauf der Darstellung noch eine große Anzahl von Definitionen, jedoch keine Postulate und Axiome mehr hinzufügt.
:Das erste Buch nun handelt von Dreiecken, Parallellinien und Parallelogrammen und schließt mit dem klassischen euklidischen Beweis des Pythagoreischen Lehrsatzes. Dazu wollen wir bemerken, daß die noch heute übliche Beweisform, bestehend aus Behauptung, Beweis und Schlußformel („was zu beweisen war“) bei Euklid erstmalig konsequent auftritt. Bei Konstruktionen heißt es am Schluß: „Was zu konstruieren war.“ Das zweite Buch wendet den „Magister Matheseos“ (wie der Lehrsatz des Pythagoras spaterspäter genannt wurde) in ausgedehntester Weise an und enthalt durch seine zahlreichen Verwandlungsaufgaben eigentlich eine „geometrische Algebra“, wie wir sie bereits bei den Pythagoreern kennenlernten. Die weiteren planimetrischen Bücher ,drei und vier behandeln die Kreislehre, die Sehnen- und die Tangentenvielecke und schließen mit dem fünften Buch, das die Proportionenlehre bringt, und dem sechsten, das die Ähnlichkeit der Figuren erörtert, den ersten Teil des Werkes ab. Hervorzuheben ist die ungeheure Verallgemeinerung, die alle bisherigen Lehrsatze durch Euklid erfahren haben. Wir können uns nicht in Einzelheiten verlieren, wollen es aber doch nicht unterlassen, auf den 31. Satz des sechsten Buches zu verweisen, der ganz allgemein die Behauptung aufstellt, daß die Summe ähnlicher Gebilde über den beiden Katheten stets gleich sei einer analogen ähnlichen Figur über der Hypotenuse. Dieser ganz allgemeine, bei Euklid auf zwei Wegen bewíesene Satz ist wohl eine sehr umfassende Folgerung, die aus dem Pythagorassatz hervorgeht. Es war damit etwa bewiesen, daß die Summe zweier aus Kreisen gebildeten „Möndchen“) über den Katheten flachengleich sei dem Möndchen über der Hypotenuse.
:Ist nun diese Verbreiterung des planimetrischen Wissens bei Euklid erstaunlich, so setzen uns die folgenden Bücher sieben bis zehn vielleicht in noch größere Verwunderung. Was sich da vor uns aufbaut, ist nichts weniger als eine umfassende Zahlentheorie, begonnen vom Unterschied der Primzahlen und zusammengesetzten Zahlen über gemeinsames Maß und gemeinsames Vielfaches, über einen Beweis von der unendlichen Menge der Primzahlen bis zu einer durchgebildeten Theorie des Irrationalen und des Inkommensurablen. Ein neuerer Forscher, Nesselmann, erklart, daß man über das in den Elementen bezüglich höherer Irrationalitaten Erreichte durch volle achtzehnhundert Jahre nicht hinauskommen konnte, was begreiflich ist, wenn man bedenkt, daß Euklid mit Ausdrücken vom Typus
:<math> \sqrt { \frac{1}{2} \sqrt{a \pm b } ( \sqrt{a} \pm \sqrt{b} ) } </math>