Diferencia entre revisiones de «Curso de alemán nivel medio con audio/Lección 102c»

Contenido eliminado Contenido añadido
Sin resumen de edición
Línea 36:
:Dabei sei nur nebenhin erwähnt, daß Euklid Gründer und erstes Schulhaupt der großen Mathematikerschule Alexandrias war; daß er noch andere großartige Werke, wie die Porismen und die Data, außerdem ein Buch über Kegelschnitte und anderes mehr verfaßte; und daß ihm unstreitig der Rang eines ganz großen Mathematikers gebührt, auch was seine höchstpersönlichen Entdeckerleistungen betrifft. Es soll nämlich durchaus nicht den Anschein haben, als ob er bloß Sammler und Systematiker gewesen Wäre, obgleich ihn auch diese Leistung allein unsterblich machen müßte, da sie die Konzeption der gesamten Mathematik betrifft.
:Nun wollen wir aber doch des lebendigeren Einblicks wegen die „Elemente“ flüchtig durchblättern. Sie heißen in griechischer Sprache „Stoicheia“ und sind in dreizehn Bücher eingeteilt. An ihrer Spitze steht das weltberühmte euklidische „Axiomensystem“, die Zusammenfassung der sogenannten Erklärungen, Forderungen und Grundsätze. Man hat diese einzelnen Gruppen auch als Definitionen, Postulate und Axiome bezeichnet und viel darüber diskutiert, wodurch sie sich voneinander unterscheiden. Sicherlich sind die Axiome oder Grundsätze nichts anderes als allgemeine oder allgemeingültige oder allen Menschen gemeinsame Einsichten, die nicht bewiesen zu werden brauchen, auch gar nicht bewiesen werden können. Jeder, auch der verwickeltste Beweis muß endlich bei diesen Axiomen als letzten Beweisgründen landen, muß auf sie als letzte Instanzen stoßen. Daß das Ganze größer als sein Teil sei (Axiom 9) oder daß zwei gerade Linien niemals einen Raum (Fläche) einschließen könnten (Axiom 12), muß ebenso jeder mathematischen oder geometrischen Bemühung irgendwie zugrunde liegen Wie etwa die Forderung 2, daß man eine begrenzte gerade Linie stetig gerade verlängern könne und daß es möglich sei, aus jedem Mittelpunkt, mit welchem Radius immer, einen Kreis zu konstruieren (Postulat 3). Ebenso setzt die ganze Geometrie rein definitorisch voraus, daß ein Punkt keine Teile (Definition 1) und eine Linie nur eine Länge ohne Breite besitze (Definition 2) oder daß ein mit seinem Nebenwinkel spiegelbildlich gleicher Winkel ein rechter Winkel sei (Definition 10).
:Aus diesem Minimum von 35 Definitionen, 3 Postulaten und 12 Axiomen [<small>Nach neuester Lesart gibt es 23 Definitionen, 5 Postulate und 8 AxıomeAxiome, ohne daß diese erschiebung der Einteilung das Wesen der Sache ändert.</small>] nun baut Euklid, wie schon erwähnt, die ganze Mathematik auf, wobei er im späteren Verlauf der Darstellung noch eine große Anzahl von Definitionen, jedoch keine Postulate und Axiome mehr hinzufügt.
:Das erste Buch nun handelt von Dreiecken, Parallellinien und Parallelogrammen und schließt mit dem klassischen euklidischen Beweis des Pythagoreischen Lehrsatzes. Dazu wollen wir bemerken, daß die noch heute übliche Beweisform, bestehend aus Behauptung, Beweis und Schlußformel („was zu beweisen war“) bei Euklid erstmalig konsequent auftritt. Bei Konstruktionen heißt es am Schluß: „Was zu konstruieren war.“ Das zweite Buch wendet den „Magister Matheseos“ (wie der Lehrsatz des Pythagoras spater genannt wurde) in ausgedehntester Weise an und enthalt durch seine zahlreichen Verwandlungsaufgaben eigentlich eine „geometrische Algebra“, wie wir sie bereits bei den Pythagoreern kennenlernten. Die weiteren planimetrischen Bücher ,drei und vier behandeln die Kreislehre, die Sehnen- und die Tangentenvielecke und schließen mit dem fünften Buch, das die Proportionenlehre bringt, und dem sechsten, das die Ähnlichkeit der Figuren erörtert, den ersten Teil des Werkes ab. Hervorzuheben ist die ungeheure Verallgemeinerung, die alle bisherigen Lehrsatze durch Euklid erfahren haben. Wir können uns nicht in Einzelheiten verlieren, wollen es aber doch nicht unterlassen, auf den 31. Satz des sechsten Buches zu verweisen, der ganz allgemein die Behauptung aufstellt, daß die Summe ähnlicher Gebilde über den beiden Katheten stets gleich sei einer analogen ähnlichen Figur über der Hypotenuse. Dieser ganz allgemeine, bei Euklid auf zwei Wegen bewíesene Satz ist wohl eine sehr umfassende Folgerung, die aus dem Pythagorassatz hervorgeht. Es war damit etwa bewiesen, daß die Summe zweier aus Kreisen gebildeten „Möndchen“) über den Katheten flachengleich sei dem Möndchen über der Hypotenuse.
:Ist nun diese Verbreiterung des planimetrischen Wissens bei Euklid erstaunlich, so setzen uns die folgenden Bücher sieben bis zehn vielleicht in noch größere Verwunderung. Was sich da vor uns aufbaut, ist nichts weniger als eine umfassende Zahlentheorie, begonnen vom Unterschied der Primzahlen und zusammengesetzten Zahlen über gemeinsames Maß und gemeinsames Vielfaches, über einen Beweis von der unendlichen Menge der Primzahlen bis zu einer durchgebildeten Theorie des Irrationalen und des Inkommensurablen. Ein neuerer Forscher, Nesselmann, erklart, daß man über das in den Elementen bezüglich höherer Irrationalitaten Erreichte durch volle achtzehnhundert Jahre nicht hinauskommen konnte, was begreiflich ist, wenn man bedenkt, daß Euklid mit Ausdrücken vom Typus