Diferencia entre revisiones de «Curso de alemán nivel medio con audio/Lección 102c»

Contenido eliminado Contenido añadido
Línea 16:
:Hatte noch ein Thales von Milet, der wohl ursprünglich Kaufmann gewesen ist und sich erst im höchsten Alter der Mathematik hingab, den großen Übergang zur wahren Wissenschaft mehr geahnt als ausgeführt, so verband sich in Pythagoras all das, was sein Lehrer Thales wußte, mit den Ergebnissen seiner Studienreisen sofort zu einer ganzen Reihe bahnbrechender Errungenschaften. Als erste dieser Neuerungen wollen wir die bekannteste besprechen, den sogenannten pythagoreischen Lehrsatz, ohne den eine Mathematik im weiteren Sinne überhaupt nicht zu denken ist. Wir wollen nicht allzuweit vorgreifen, aber wir müssen doch hier schon andeuten, daß ohne diesen Lehrsatz kaum irgendein Zweig der Geometrie und darüber hinaus der auf Geometrie fußenden höheren Mathematik sich hätte ausbilden können.
:Jedermann weiß, wie dieser Lehrsatz lautet, weiß, daß in jedem rechtwinkligen Dreieck das Quadrat über der dem rechten Winkel gegenüberliegenden Seite (der Hypotenuse) gleich ist der Summe aus den Quadraten über den beiden anderen Dreieckseiten, den sogenannten Katheten. Die von Schopenhauer aufgeworfene Frage, warum diese Beziehung bestehe, ist wie alle derartigen Fragen nicht zu beantworten. Man kann in hundert Arten beweisen, daß es so ist. Das „Warum“ bleibt ein Mysterium. Die Eigenschaften einer geometrischen Figur liegen eben in ihrem Wesen, im Begriff der Figur, den wir selbst gebildet haben. Solche Fragen sind ebenso sinnlos wie die Fragen, ob es in „Wirklichkeit“ rechte Winkel geben kann. Es „gibt“, streng genommen, in einer derart aufgefaßten „Wirklichkeit“ überhaupt keine Winkel, da sich unendlich dünne Linien und vollständig ausdehnungslose Scheitelpunkte in einer materiellen Welt nicht manifestieren können. Alle Gebilde der Geometrie existieren nur in unsrem Kopfe, sie sind ein Geisterreich, das seine Gesetze, unabhängig von der äußeren Erfahrung, in sich selbst trägt, das aber ebendeshalb als Reich reiner Formen, an jede beliebige „Wirklichkeit“ angelegt, Geltung besitzen und behalten muß. Die Sätze über das Dreieck gelten für ein Dreieck aus Fixsternen ebenso hundertprozentig Wie für ein Dreieck aus Holz, Metall, Stein oder Brotteig. Sie gelten aber auch für ein Dreieck aus Zahlenlinien. Doch das nur nebenbei.
:Pythagoras hatte also als erster den Satz für jedes Dreieck ausgesprochen, der bisher in Ägypten bloß für das Seitenverhältnis 3, 4, 5 (somit 3<sup>2</sup> + 4<sup>2</sup> = 5<sup>2</sup> oder 9 + 16 = 25) und in Indien für die Seiten 5, 12 und 13 (somit 5<sup>2</sup> + 12<sup>2</sup> = 13<sup>2</sup> oder 25 + 144 == 169) bekannt war. Und dazu für seine Umkehrung, von der man in Ägypten und Indien eigentlich ausgegangen war. In diesen beiden Ländern hatte man, wie wir wissen, gesagt, ein rechter Winkel entstehe (oder ein rechtwinkliges Dreieck liege vor), wenn die Seiten in dem und dem Verhältnisse ständen. Pythagoras sagt umgekehrt: in jedem rechtwinkligen Dreieck, also in jedem und jedem aller überhaupt möglichen rechtwinkligen Dreiecke, verhielten sich die Seiten in dem schon oben geschilderten quadratischen Verhältnis der Gleichheit von Summe der Kathetenquadrate mit dem Hypotenusenquadrat. Wenn man Weiters etwa als Konstruktionsbehelf den Satz des Thales von Milet heranzieht, dann könnte man über einer und derselben Hypotenuse alle die unendlich Vielen rechtwinkligen Dreiecke zeichnen, die ihre Scheitelpunkte im Kreisumfang haben müssen. Wie verschieden diese Dreiecke nun auch aussehen, stets wird das Quadrat über dem Kreisdurchmesser flächengleich sein der Summe der Quadrate über den beiden Seiten, die je einen Umfangspunkt des Halbkreises mit den Endpunkten des erwähnten Durchmessers verbinden. Und wir glauben, daß es auch einem Skeptiker jetzt klar sein muß, wie weit sich dieses vollständig allgemeine Gesetz von den an sich brauchbaren und richtigen Einzelfällen der ägyptischen und indischen Geometrie unterscheidet. Vor allem ist der Satz des Pythagoras, obgleich er ein wirkliches Messen erst ermöglicht, durchaus unabhängig von jeder eigentlichen konkreten Maßgröße. Er ist Ursprung und Ausgangspunkt und nicht Folge oder Ergebnis der Messung. Das bis dahin primitive „Werkzeug“ ist gleichsam zur universell anwendbaren Maschine geworden. Und man darf jetzt ruhig die Frage aufwerfen, wie groß etwa die Hypotenuse sein müsse, wenn wir die beiden Katheten
:a&nbsp;=&nbsp;5 und b&nbsp;=&nbsp;7 kennen.
:Die Summe a<sup>2</sup> + b<sup>2</sup> ist in konkreten Zahlen hier
Línea 38:
:Also 8<sup>2</sup> + 15<sup>2</sup> = 17<sup>2</sup> oder 64 + 225 = 289.
:Nach dieser pythagoreischen Formel findet man leicht für n&nbsp;=&nbsp;1 das ägyptische und für n&nbsp;=&nbsp;2 das indische Dreieck. Daß Pythagoras auch wußte, daß er jede dieser Zahldreiheiten mit beliebigen ganzen Zahlen vervielfachen durfte, ohne die Ganzzahligkeit der Lösung zu beeinträchtigen, ist mehr als wahrscheinlich, da die einfachste Zeichnung lehrt, daß sich am Wesen der Figur durch Verdopplung, Verdreifachung usf. der Einheitsstrecke nichts ändert.
:Etwa (3·3)<sup>2</sup> + (3·4)<sup>2</sup> &nbsp;== &nbsp;(3·5)<sup>2</sup> ergibt wieder ein ganzzahliges rechtwinkliges Dreieck, da 81&nbsp;+&nbsp;144 =&nbsp;225 die Richtigkeit zeigt.
:Wie nun, so fragen wir uns, hat Pythagoras unbestimmte Gleichungen behandelt, die ihm die erwähnten Lösungen lieferten? War er etwa schon im Besitze einer Buchstabenrechnung? Oder hat er seine Weisheit von der ägyptischen Haufenrechnung entlehnt? Die zweite Möglichkeit besteht, die erste ist unbedingt abzulehnen. Es besteht aber noch eine dritte Möglichkeit, mit der wir uns aus sehr wichtigen Gründen eingehend auseinandersetzen müssen. Es wird nämlich berichtet, daß schon Pythagoras und die Pythagoreer die Kunst des „Anlegens“ geübt hätten, daß ihnen alle drei Methoden des parabolischen, elliptischen und hyperbolischen Anlegens geläufig gewesen seien. Wir dürfen - dies sei festgestellt - hier noch durchaus nicht an die uns bekannten Kurven-Begriffe von Parabel, Ellipse und Hyperbel denken. Viel später, wie wir noch sehen werden, hat sich dieser Kurvenbegriff bei Apollonios von Pergä aus dem entwickelt, was hier in Rede steht. Aber so weit sind wir vorläufig noch nicht. Die Kunst des Anlegens war vielmehr etwas, was sich auf griechischem Boden eigentümlich entwickelte, eine Verwandlungskunst, eine Kunst, Figuren der Geometrie in andre Figuren gleichen Flächeninhaltes zu verwandeln. Neuere Forscher der Mathematikgeschichte haben diese Betätigung treffend als „geometrische Algebra“ bezeichnet).
:Und diese „Algebra“ ermöglicht es tatsächlich, in verkappter Art Gleichungen bis zum sogenannten zweiten oder gemischtquadratischen Grad zu lösen.