Diferencia entre revisiones de «Bioluminiscencia»

Contenido eliminado Contenido añadido
Sin resumen de edición
Línea 13:
Las primeras investigaciones sobre los fundamentos químicos de la bioluminiscencia se atribuyen al farmacólogo francés Raphaël Dubois. Entre 1885 y 1892, trabajó con dos especies de animales bioluminiscentes (las luciérnagas tropicales del género ''Pyrophorus'' y el molusco bivalvo ''Pholas dactylus''), refutó la teoría del fósforo, vigente hasta entonces, y demostró que el fenómeno de la emisión biológica de luz no era más que un proceso de oxidación enzimática en el que intervenían dos sustancias: una de ellas, termorresistente, se consumía en presencia de la otra, que actuaba como catalizador termolábil. Y el propio Dubois llamó luciferina a la primera de ellas, y luciferasa a la segunda. <ref>Navarro A., F. (2 de julio de 2013). Luciferina y luciferasa. . Recuperado el 10 de diciembre de 2016, de Laboratorio del lenguaje : http://medicablogs.diariomedico.com/laboratorio/2013/07/02/luciferina-y-luciferasa-nombres-demoniacos/</ref> [[File:Luc-Luc schema.png|thumb|La luciferina (L) se modifica mediante utilización de oxígeno por las luciferasas, ahí se forma un intermediario I y por último en un sustrato activo eléctricamente P*. Después de un corto tiempo de vida se emiten fotones y el sustrato base P se alcanza.]]
 
En comparación con los procesos quimioluminiscentes, los procesos bioluminiscentes se caracterizan por un alto rendimiento cuántico de los procesos quimioluminiscentes, mientras que el rendimiento cántico de los procesos bioluminiscentes, la enzima es quien desarrolla un papel importante. En este proceso se llevan a cabo reacciones luciferina-luciferasa, en las que una sustancia proteica luminiscente (luciferina) es oxidada por la acción catalizadora de una enzima (luciferasa). La reacción sucede de la siguiente manera: el oxígeno oxida el sustrato (una proteína llamada luciferina); la luciferasa acelera la reacción, y el ATP proporciona la energía para la reacción, produciéndose agua y luz.'''(CITA 2).'''
La reacción es muy rápida y perdura mientras el organismo esté siendo iluminado. Dependiendo del organismo, la composición química de la luciferina y luciferasa va a cambiar, lo cual provoca coloraciones diferentes de luminiscencia.
 
Línea 23:
== Organismos bioluminiscentes ==
El fenómeno de la bioluminiscencia lo podemos observar en organismos como en luciérnagas, en algunos hongos y bacterias, pero principalmente, en especies marinas. Existen peces que usan la luz emitida para atraer a la hembra o a su presa, iluminándola para facilitar el ataque, o como mecanismo de defensa para confundir al depredador y escapar. <ref>Adam, C., Virginia B., M., Revuelta, C., & Valarolo, G. (2013). De las luciérnagas a la luz química. Cultura Científica .</ref>
 
==== Luciérnagas ====
 
En la reacción bioluminiscente catalizada por la enzima luciferasa de las luciérnagas además de las moléculas de luciferina y oxígeno participa la molécula de adenosin trifosfato (ATP).
La enzima luciferasa de las diferentes especies de luciérnagas varía un poco en la estructura primaria, en la dependencia al pH del proceso catalítico y en algunos parámetros cinéticos. Sin embargo, el esquema de la reacción y la estructura de la luciferina son semejantes para diversas luciferasas.
La reacción catalizada por la enzima de luciérnagas se describe con el siguiente esquema estequiométrico (Fig. 3): '''(falta imagen por copiar)'''
 
Figura 3. Reacción catalizada por las enzimas de las luciérnagas (Ilyina, et al., 1998).
 
En donde E es la luciferasa; LH<sub>2</sub> es la luciferina; PPi es pirofosfato inorgánico y P es el producto de la reacción (oxiluciferina). La estequiometría de la reacción es la siguiente: por cada molécula de luciferina se gasta una molécula de oxígeno y se forma una molécula de dióxido de carbono. Se propone que la luciferina, los iones de Mg<sup>2+</sup> y el ATP tienen sitios de unión independientes en la enzima '''CITA 2'''
 
==== Organismos marinos ====
La bioluminiscencia se observa en una amplia variedad de organismos marinos. Los cuales incluyen bacterias, dinoflagelados, radiolarios, hongos, ctenóforos, cnidarios, anélidos, moluscos, artrópodos, equinodermos, tunicados y peces. Estos organismos utilizan la bioluminiscencia para funciones esenciales que van desde la defensa a la reproducción. La capacidad de producir luz siempre implica una reacción quimioluminiscente donde el sustrato emisor de luz (una luciferina) es oxidada por una enzima específica (una luciferasa). Luciferinas y luciferasas son altamente variables en su estructura química y secuencia de proteínas. Por esta razón, se piensa que la bioluminiscencia surgió independientemente muchas veces durante la evolución.
La coelenterazina es la luciferina predominante observada en el medio ambiente oceánico y es el tipo específico de luciferina utilizado en la bioluminiscencia de medusas (Phylum ''Cnidaria'') y gelatinas de peine, o ctenophores (Phylum ''Ctenophora'').<ref>Christine E, S., Kevin, P., Meghan, L., Adam, M., Joseph, F., David, S., y otros. (12 de Diciembre de 2012). Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biology.</ref>
 
===== Bacterias =====
Las bacterias marinas, también son organismos abundantes luminiscentes; las hay de vida libre o simbióticas, que viven en la superficie de otros organismos marinos o dentro de sus cavidades, por ejemplo dentro de su tracto digestivo. Los invertebrados, como por ejemplo ctenóforos, crustáceos, cefalópodos, salpas y otros, así como algunos vertebrados marinos (peces de profundidad) producen bioluminiscencia. Aunque en todos estos grupos el mecanismo de la bioluminiscencia es similar, el mecanismo por el que cada organismo produce luz, varía en la complejidad molecular de la luciferina y luciferasa, lo que da el color a la luz emitida '''(CITA 1)'''
Las especies de bacterias marinas mayormente estudiadas son ''Vibrio harveyi'' y ''Vibrio fischeri'' . Se sabe que ''V. harveyi'' puede estar asociado al intestino de algunos animales marinos o encontrarse como un microorganismo de vida libre en el océano; mientras que ''V. fischeri'' además de encontrarse en estos hábitats también vive en cultivo puro como simbionte de los órganos productores de luz en varios peces y calamares.<ref>Bassler BL, Greenberg EP y Steven AM. 1997. Cross-Species Induction of Luminescence in the Quorum- Sensing Bacterium Vibrio harveyi. J. Bacteriol. 179:4043–4045.</ref> Está bien establecido que las bacterias bioluminiscentes emiten luz sólo cuando existe alta densidad celular; una sola célula bacteriana de vida libre en el océano no se espera que emita luz. El entendimiento del mecanismo de esta regulación provee los principios básicos de la emisión de luz por parte de las bacterias marinas y a su vez, auxilia en el entendimiento de los mecanismos de comunicación celular, mejor conocida como quorum sensing. <ref>Czy A, Plata K y Wêgrzyn G. 2002. Induction of light emission by luminescent bacteria treatedwith UV light and chemical mutagens. J.Appl. Genet. 43: 377-389</ref>
Se propuso como hipótesis que la bioluminiscencia en estos microorganismos, estaba regulada por moléculas mensajeras que viajaban entre las células. Se llamó a estos mensajeros, “autoinductores” <ref>Gonzalez JE y Keshavan ND. 2006. Messing with Bacterial Quorum Sensing. Microbiol. Mol. Biol. Rev. 70:859–875</ref> <ref>Sáenz, M. S., & Nevárez, M. G. (2010). La bioluminiscencia de organismos marinos y su potencial biotecnológico. Revista Científica de la Universidad Autónoma de Coahuila , 2.</ref>
===== Medusas =====
===== Calamares =====