Diferencia entre revisiones de «Álgebra Abstracta/Clasificación de Grupos»

Contenido eliminado Contenido añadido
Sin resumen de edición
Sin resumen de edición
Línea 1:
<noinclude>
{{navegar|libro=Álgebra/Álgebra Abstracta (Primer Curso)/Contenidos
{{navegar
|actual=Grupos Cíclicos
|libro=Álgebra/Álgebra Abstracta (Primer Curso)/Contenidos
|anterior=Subgrupos
|actual=Clasificación de Grupos
|siguiente=Grupos Generados
|anterior=Teoremas de Homomorfismos
}}
|siguiente=Teoremas de Cardinalidad }}
</noinclude>
 
== Introducción ==
[[Archivo:Cyclic group.svg|right|thumb|250px|Las seis raíces complejas 6-ésimas de la unidad forman un grupo cíclico bajo la multiplicación. ''z'' es un elemento de este grupo cíclico o elemento '''primitivo''', pero ''z''<sup>2</sup> no lo es, porque las potencias impares de ''z'' no son representables como potencias del elemento ''z''<sup>2</sup>.]]
 
Los grupos cíclicos han aparecido anteriormente varias veces. Tales grupos son muy importantes en la teoría de los grupos, especialmente de los grupos abelianos. Dedicaremos este capítulo a establecer la estructura interna de los grupos cíclicos y algunas propiedades no vistas anteriormente.
Clasificar familias de grupos significa, hallar todos los posibles tipos (no
isomorfos) de los grupos de la familia. En este capítulo, veremos la clasificación
por orden de grupos finitos.
 
Resumimos, a continuación, nuestro conocimiento de grupos cíclicos
Sea <math>G</math> un grupo con <math>|G| = n</math>. Sabemos que:
<i><ol>
<li> Un grupo (o subgrupo) cíclico consiste de todas las potencias entera de uno de sus elementos, llamado generador del grupo.
 
<li> Los grupos cíclicos son abelianos.
<ul>
<li> cuando ''n'' es un número primo, <math>G</math> es cíclico
 
<li> Dos grupos cíclicos finitos de igual orden, son isomorfos. Denotamos a un grupo cíclico de orden n por C<sub>n</sub> .
<li> hay un único grupo de orden ''n'', cuando ''n=1,2,3'' y que
 
<li> Hay grupos cíclicos finitos (Enteros módulo m) e infinitos (los Enteros).
<li> para cada ''n'', hay al menos un grupo de orden ''n'', el grupo cíclico de ese
 
orden
<li> Cada elemento <math>a</math> de un grupo cualquiera genera un subgrupo cíclico, denotado por
<math>\langle a \rangle</math>.
</ol></i>
 
== Clasificación de los Grupos Cíclicos ==
 
En esta sección produciremos un listado completo de todos los posibles grupos cíclicos.
 
Sea G un grupo cíclico, digamos que <math>G = \langle a \rangle</math>. Entonces, para cada entero ''n'', ''a<sup>n</sup>'' es un elemento de G, por lo que podemos definir una función f desde los Enteros en G por f(m) = a<sup>m</sup>. Claramente, f es suprayectiva y, por las propiedades de las potencias, tenemos que:
<center><math> f(m+n) = a^{m+n} = a^m\,a^n=f(m)f(n).</math></center> Es decir, que f es un homomorfismo (suprayectivo) de <math>\scriptstyle\Z</math> en G. Por los resultados sobre homomorfismos, tendremos que el núcleo de este homomorfismo, o sea el conjunto de todos los enteros n tales que <i>f(n) = a<sup>n</sup> = e</i>, es un subgrupo de <math> <\Z,+></math>. De acuerdo a los resultados de un capítulo anterior, sabemos que los únicos subgrupos aditivos de los Enteros son los <math>m\Z</math> (múltiplos enteros de un número positivo o cero ''m''). Por lo que el núcleo de ''f'' será uno de esos subgrupos. Tenemos varias posibilidades para ese núcleo, dependiendo de su generador.
 
<ol type="i">
<li> <math>\ker(f) = <0> =\{0\}</math>. En este caso, <math>a^n=e \implies n=0</math>. Esto implica que f es inyectiva. Como f es, además, suprayectiva, tendremos que f establece un isomorfismo entre el grupo aditivo <math> <\Z,+> </math> y el grupo <math>\langle a \rangle</math>.
 
<li> <math>\ker(f) = <1>= \Z</math>. En este caso, se cumple que para todo n, <math> a^n = e </math>. En particular con n = 1, tenemos que a = e. Por lo tanto, <math>\langle a \rangle = \{e\}</math>,el subgrupo nulo.
 
<li> <math>\ker(f) = <d></math> donde ''d'' es un entero positivo mayor que 1. El número ''d'' es el menor entero positivo tal que a<sup>d</sup> = e. Para cualquier otro entero ''m'' tendremos entonces que, ''m=qd+r'', con <math>0 \le r <d</math> y, por lo tanto, <math>a^m=a^{qd+r}=(a^d)^qa^r = a^r.</math> Es decir que
<center><math>\langle a \rangle = \{ e, a, a^2, \ldots, a^{d-1} \}, </math></center>
un grupo cíclico con ''d'' elementos.
</ol>
 
<b>Proposición 1. (Clasificación de los Grupos Cíclicos)</b> <i>
Sea <math>G = \langle a \rangle</math>. Tenemos tres posibilidades para G.
<ol type = "i">
<li> G es isomorfo al grupo de los Enteros, por lo que es un grupo infinito, o
<li> G es el subgrupo trivial integrado únicamente por el elemento neutro, o
<li> G es isomorfo a <math>\textsf{C}_d</math>.
</ol></i>
 
<b>Observaciones.</b>
<ul>
<li> Sigue de la proposición que grupos cíclicos de orden infinito son isomorfos.
<li> Los Enteros módulo <i>m</i>, la raíces n--ésimas de la unidad caen en la tercera categoría anterior.
<li> En el grupo aditivo de los Enteros, cualquier elemento diferente de 0 tiene orden infinito, pero no son necesariamente generadores del grupo.
</ul>
<hr>
 
=== ClasificaciónOrden de los Grupos de Orden 4Elementos ===
 
{{Ejmpl|Ejemplo}}
Sea <math>G = \{e,a,b,c\}</math> un grupo de orden 4, que no sea cíclico.
ComoSea G= <math>G\Z_{12}</math>. noLa establa cíclico,siguiente todospresenta los elementosordenes diferentesde delcada neutrouno de sus elementos.
<center><math>\begin{array}{c||c|c|c|c|c|c|c|c|c|c|c|c|}
deben tener orden 2. Por lo que <math>G</math> tiene tres subgrupos de orden
\text{elemento}&[0]& [1] & [2] & [3] &[4] & [5] &[6] & [7] &[8] & [9] & [10] & [11] \\ \hline
2, <math>\{e,x\}</math>, donde <math>x=a,b,c.</math>
\text{orden} & 1 & 12 & 6 & 4 & 3 & 12 & 2 & 12 & 3 & 4 & 6 & 12
\end{array}
</math></center>
 
Ejemplo de verificación: o([3]) = 4 ya que 4[3] = [12] = [0] y, 1[3] = [3] <math>\neq</math> [0], 2 [3] = [6] <math>\neq</math> [0] y 3[3] = [9] <math>\neq</math> [0].
Sea <math>z=ab</math>. <ul> <li> Si ''z=e'', se tiene que ''ab = e'', lo que implica
Notemos que cualquier elemento cuyo orden sea 12 es un generador del grupo, es decir, es posible que haya más de un generador de un grupo cíclico.
que ''aab=a'', o sea que ''b= a''. Imposible. <li> Si ''z=a'' o ''z=b'' se concluye,
<hr>
respectivamente que ''b=e'' o que ''a =e''. Imposible. </ul> La única posibilidad es
que <math>z=ab=c</math>. Por simetría entre ''a'' y ''b'', concluimos que,
también, ''ba=c''. Por lo tanto, si existe un grupo no cíclico <math>G</math> de
orden 4, debería ser
{{Eqn|<math>\langle a,b | a^2=b^2=e, ab =ba\rangle.</math>}}
Claramente, este grupo existe, es nuestro viejo conocido:el
grupo de Klein.
 
<b>Proposición 2. (Caracterización del Orden por Divisibilidad) </b> <i> Sea G un grupo y g un elemento de G con orden finito d. Entonces, cuando <math>g^n=e</math>, se cumple que d es un divisor de n.</i>
<div style="background: white; border: 1px solid navy; width:50%; margin:10pt
<ul><i>
80pt 10pt 50pt; padding: 1.5ex; font-family: Arial; font-style: normal;">
Demostración: </i>Se tiene que <i>n = qd + r</i> con <math>0 \le r < d </math>. Si r fuera positivo, como <i>r = n - dq</i>, se tendría que <i>a<sup>r</sup> = a<sup>n-dq</sup> = a<sup>n</sup>(a<sup>d</sup>)<sup>-q</sup> = e</i>, por lo que <i>a<sup>r</sup>=e</i>; pero como r < d, esto es imposible. Luego, r = 0, por lo que se tiene el resultado.
<center><b>Grupos de Orden 4</b></center><br /> Un grupo de orden 4 es
{{QED}} </ul>
isomorfo a: <ol type="i"> <li> el grupo cíclico de orden 4, o <li> el grupo de Klein.
:<hr>
</ol> </div>
 
=== Subgrupos de Grupos Cíclicos ===
== La Cardinalidad del Producto de dos Subgrupos ==
 
Describiremos, a continuación, las posibilidades para los subgrupos de un grupo cíclico.
Antes de continuar nuestros estudios de clasificación, probaremos un resultado
acerca de la cardinalidad del conjunto producto de dos subgrupos, que nos
ayudará en clasificaciones futuras.
 
<b>Proposición 3. (Subgrupos de un Grupo Cíclico)</b> <i>
Recordemos que el conjunto producto de dos subgrupos no necesariamente
<ol type="a">
determina un subgrupo. Sean <math>H</math> y <math>K</math> subgrupos de
<li> Cada subgrupo de un grupo cíclico es cíclico.
<math>G</math>, ¿cuántos elementos tiene <math>HK</math> ? Suponiendo
<li> Sea G un grupo cíclico de orden n. Entonces, para cada divisor del orden de G, hay exactamente un subgrupo con ese orden. En forma más precisa, si n=qd y <math>G = \langle a \rangle</math>, el subgrupo de orden d es <math>\langle a^q \rangle</math>,
<math>|H|=m</math> y <math>|K|=n</math>. tendremos que todos los productos
<li> Sea <math>G=\langle a \rangle</math> de orden n. El orden de <math>a^k</math> es n/mcd(k,n).
que podemos tomar con primer factor en <math>H</math> y segundo en
</ol></i>
<math>K</math> serán <math>mn</math>. Sin embargo, algunos de esos
<ul><i>
productos podrían ser iguales entre si. Es decir que podemos afirmar que:
Demostración: </i>
<center><math>|HK| \le |H||K| = mn.</math></center> ¿Cuándo dos de esos
<ol type="a">
productos son iguales? Si <math>h_1k_1=h_2k_2</math> se tiene que
<li> Sea G un grupo cíclico. Si G es infinito, el resultado sigue del resultado acerca de los subgrupos del grupo <math>\Z</math>. Si G es nulo, el resultado es trivial. Supongamos entonces que <math>G = \langle a \rangle</math> y que el orden de a fuera d>1. Es decir, d sería el menor entero positivo tal que a<sup>d</sup>=e. Sea H un subgrupo no trivial de G, entonces habrá algún a<sup>k</sup> en H con <math>1< k \le d-1</math>. Sea s el entero positivo minimal con la propiedad que a<sup>s</sup> \in H. Afirmamos que H = <a<sup>s</sup>>. Sea a<sup>p</sup> un elemento cualquiera de H, entonces por el algoritmo de la división de Euclides, aplicado a ''p'' y ''s'', nos proveerá enteros ''q'' y ''r'' tales que: <math> p = qs + r \quad \text{con}\quad 0 \le r < s</math>. Notemos que
<math>h_2^{-1}h_1=k_2k_1^{-1}</math>. Llamando <math>x</math> a este
<center><math>a^r = a^{p-qs} = a^p (a^{qs})^{-1}</math>,</center> lo que muestra que a<sup>r</sup> es un elemento de H. Por la minimalidad de s, tendremos que r = 0, lo que implica que cada elemento de H es una potencia de a<sup>s</sup>. Es decir que, H = < a<sup>s</sup> es un subconjunto de <a<sup>s</sup>>; como la inclusión inversa es trivial, tendremos que H = <a<sup>s</sup>>, de donde, concluimos que H es cíclico.
elemento, tendremos por su representación de la izquierda que <math>x</math>
está en <math>H</math>. mientras que su representación de la derecha nos
dice que <math>x</math> está en <math>K</math>. Por lo que <math>x</math>
está en <math>H \cap K</math>. Esto nos indica que debemos velar por los
productos de elementos que provienen de la intersección de los dos subgrupos.
 
<li> Sea G un grupo cíclico de orden n y sea d un divisor de n, digamos que n = qd. Probaremos que <a<sup>q</sup>> tiene orden d. En efecto, se tiene que (a<sup>q</sup>)<sup>d</sup> = a<sup>qd</sup> = a<sup>n</sup> = e, o sea que d debe ser un múltiplo del orden de a<sup>q</sup>. Supongamos que k fuera el orden de a<sup>q</sup>, si k fuera menor que d, se tendría que a<sup>qk</sup>} = (a<sup>q</sup>)<sup>k</sup> = e. Como qk < qd = n, lo anterior es imposible, ya que n es el menor entero positivo p tal que a<sup>p</sup>=n. Luego, k debe ser igual a d.
En efecto, supongamos que <math>g = hk</math> es un elemento cualquiera de
<math>HK</math> y sea <math>x</math> un elemento de <math>H \cap
K</math>. Entonces, <center><math>g = hk = (hx)(x^{-1}k)
=h_1k_1.</math></center> Lo que prueba que para cada <math>x</math> en
<math>H \cap K</math>. podemos escribir <math>g</math> de una manera
distinta como producto de un elemento de <math>H</math> por
<math>K</math>. Es decir que en los productos <math>hk</math>. cada
elemento aparecerá repetido al menos <math>|H \cap K|</math> veces. El
argumento del párrafo anterior muestra que las repeticiones ocurren
exactamente cuando el elemento proviene de dicha intersección; por lo que la
cantidad de repeticiones es exactamente <math>|H \cap K|</math>. Por lo que
tenemos la siguiente proposición.
 
Probaremos ahora la unicidad, sean d y q como antes y sea H un subgrupo de orden d de G, queremos probar que H= <sup>q</sup>. Sabemos que H es cíclico y que, por lo tanto, existe un s tal que H = <sup>s</sup>>; como a<sup>n</sup> = e, se tiene que s es un divisor de n y, por los argumentos anteriores, el orden de a debe ser igual a n/s. Pero ese orden es d = n/q. Luego n/s=n/q, de donde s=q y queda probada la unicidad.
<b>Proposición (Cardinalidad de un Conjunto Producto de Subgrupos) </b><i>
Sean <math>H</math> y <math>K</math> subgrupos de <math>G</math>.
Entonces,
<center><math>{\quad |HK| =\frac{|H||K|}{|H \cap K|} \quad}.</math></center> </i>
 
<li> Sea d= mcd(k,n). Entonces k=k<sub>1</sub>d y n=n<sub>1</sub>d. Luego, <center><math>(g^k)^m = e \iff n | km \iff n_1d|k_1dm \iff n_1|k_1m.</math></center> Pero, <math>n_1 \nmid k_1</math>, por lo que <math>n_1|m</math>. Sigue de la caracterización del orden por divisibilidad que o<math>(g^k)= n_1 = n/d.</math>
== Clasificación de los grupos de orden 6 ==
</ol>
{{QED}}</ul>
<hr>
 
=== Orden de los Elementos ===
Aplicaremos los resultados anteriores a la clasificación de los grupos de orden 6.
Clasificar significa, hallar todos los posibles tipos (no isomorfos) de una familia
de grupos, en este caso de los grupos cuyo orden es 6.
 
¿Cuáles son los posibles ordenes de los elementos de un grupo cíclico?
Sea <math>G</math> un grupo de orden 6. Como, para cada posible orden
tenemos un grupo cíclico de orden 6, nos podemos preguntar ¿aparte del cíclico
cuántos (tipos de) grupos diferentes de orden 6 hay? Nosotros conocemos al
menos uno adicional, <math>\textsf{S}_3= \textsf{D}_6</math>.
 
Notemos que el orden de un grupo cíclico <math>\langle a \rangle</math> coincide con el orden de su generador <math>o(a)</math>. Si <math>\langle a \rangle \cong \Z</math> entonces el orden es infinito, mientras que si <math>\ker{f} = \angle d \rangle</math>, <math>d \ge 1</math>, entonces <math>o(a) = d = |\langle a \rangle|</math>.
Supongamos que <math>G</math> no fuera cíclico. Por el teorema de Lagrange,
sabemos que los únicos ordenes posibles para los subgrupos y, por lo tanto,
para los elementos son 1, 2, 3 y 6.
 
{{Ejmpl|Ejemplo}}
El neutro es el único elemento de orden <math>1</math>.
En el grupo aditivo de los Enteros, cualquier elemento diferente de 0 tiene orden infinito.
<hr>
 
{{Ejmpl|Ejemplo}}
Sea <math>G= \Z_{12}</math>. La tabla siguiente presenta los ordenes de cada elemento.
<center><math>
\begin{array}{c||c|c|c|c|c|c|c|c|c|c|c|c|}
\text{elemento}&[0]& [1] & [2] & [3] &[4] & [5] &[6] & [7] &[8] & [9] & [10] & [11] \\ \hline
\text{orden} & 1 & 12 & 6 & 4 & 3 & 12 & 2 & 12 & 3 & 4 & 6 & 12
\end{array}
</math></center>
 
Ejemplo de verificación: <math>o([3])=4</math> ya que <math>4\cdot[3] = [12] = [0]</math> y, <math>1[3] = [3] \neq 0</math>, <math>2 [3] = [6] \neq 0</math> y <math>3[3] = [9] \neq 0</math>.
Notemos que cualquier elemento cuyo orden sea 12 es un generador del grupo, es decir, es posible que haya más de un generador de un grupo cíclico.
<hr>
 
<b> Proposición 4. (Caracterización del Orden por Divisibilidad) </b> <i> Sea <math>g</math> un elemento con orden finito <math>d</math>. Entonces, cuando <math>g^n=e</math>, se
cumple que <math>d</math> es un divisor de <math>n</math>.
</i> <ul>
Demostración: </i> Tenemos, por división, que <math>n = qd + r</math> con <math>0 \le r <d</math>. Si <math>r</math> fuera positivo, como <math>r=n-dq</math>, se tendría que <math>a^r=a^{n-dq} = a^n(a^d)^{-q}=e</math>, por lo que <math>a^r=e</math>; pero como <math>r<d</math>, esto es imposible. Luego, <math>r=0</math>, y se tiene el resultado.
{{QED}} </ul> <hr>
 
{{Ejmpl|La función <math>\varphi</math> de Euler}}
Sea <math>G=\langle a \rangle</math> un grupo de orden <math>n</math>. Sigue de la parte c) de la proposición anterior que los elementos de orden <math>n</math> de <math>G</math> son los <math>a^k</math> tales que <math>\textsf{mcd}(k,n)=1</math>. Es decir, todos los <math>k</math>, <math>1 \le k \le n</math> que son relativamente primos con <math>n</math>. La cantidad de esos elementos se llama la función de Euler de <math>n</math> y se denota por <math>\varphi(n)</math>.
 
{{Ejmpl|Ejemplo}}
Si <math>p</math> es primo, <math>\varphi(p) = p-1</math>. Por lo que los generadores de <math>\textsf{C}_p</math> son todos los elementos, excepto el neutro.
<hr>
 
La tabla siguiente muestra los valores de <math>\varphi(n)</math> para valores pequeños de <math>n</math>,
 
<center><math>\begin{array}{|c||c|c|c|c|c|c|c|c|c|c|} \hline
n & 2 & 4 & 6 & 8 & 9 & 10 & 12 & 14 & 15 & 16 \\ \hline
\varphi(n) & 1 & 2 & 2 & 4 & 6 & 4 & 4 & 6 & 8 & 8 \\ \hline
\end{array}</math></center>
 
== Homomorfismos y Grupos Cíclicos ==
 
<b>Proposición 5. (Homomorfismos y Cíclicos) </b><i> Sea G un grupo cíclico y <math>f:G \longrightarrow H</math> un homomorfismo de grupos. Entonces, la imagen <math>f(G)</math> es un subgrupo cíclico.</i>
<ul><i>
Demostración: </i> Sea <math>a</math> un generador de <math>G</math>. Entonces, para cada <math>y</math> de <math>f(G)</math> hay un <math>x=a^k</math>, para algún <math>k</math>, tal que <math>f(x)=y</math>. Lo que implica que <math>y =f(a^k) = f(a)^k</math>; lo que muestra que <math>f(G)</math> es cíclico con generador <math>f(a)</math>.
{{QED}}</ul>
<hr>
 
=== Los Automorfismos de los Enteros Módulo ''m'' ===
Recordemos que un automorfismo de un grupo es un isomorfismo (homomorfismo biyectivo) del grupo en si mismo. Todos los automorfismo de un grupo determinan, a su vez, un grupo simbolizado por <math>\textsf{Aut}</math>(G). Sea G=<math>\Z_m</math>, el grupo cíclico con m elementos y sea f: G \flecha G un automorfismo, entonces la imagen de [1] debe ser un generador de G, ya que <math>f(G) \cong G</math>. Luego, hay <math>\varphi(m)</math> posibles selecciones para la imagen de G. Por lo que se tiene que <math>|Aut(G)|=\varphi(m)</math>.
 
== Los Grupos Simétricos ==
 
Recordemos que llamamos grupo simétrico de un conjunto <math>X</math> al grupo <math>\textsf{S}_X</math> determinado por todas las biyecciones del conjunto <math>X</math> en si mismo, con la composición de funciones como operación.
Dos conjuntos con igual cardinal tienen grupos simétricos isomorfos.
 
Cuando el conjunto es finito, es tradicional llamar \textbf{permutaciones} a los elementos del grupo simétrico.
 
{{Marco|<b>Advertencia.</b> Para simplicidad de la exposición, supondremos que nuestro grupo simétrico de <math>n</math> símbolos actúa en <math>\{1,2 \dots, n\}</math>. Esto no es realmente una gran restricción, ya que los grupos simétricos de conjuntos con <math>n</math> elementos son, siempre, isomorfos entre si. Como la intuición de permutaciones es reordenación, el conjunto donde actúan las permutaciones debe estar ordenado, lo que se traducer en una enumeración como
<center><math>X=\{a_1, a_2, \ldots, a_n\}</math></center>
y al restringirnos a <math>\{1,2,\dots, n\}</math> es como que estuviéramos trabajando cono los índices.
}}
Recordemos que denotamos por <math>\textsf{S}_n</math> al grupo simétrico de <math>I_n=\{1,2, \dots, n\}</math> y llamamos permutaciones (de <math>n</math> símbolos) a sus elementos.
Intuitivamente, una <i>permutación</i> de una cierta cantidad de objetos es un (re)ordenamiento de los mismos.
 
 
=== Los Ciclos ===
 
{{Ejmpl|Ejemplo A}} <!-- ejemCiclo01 -->
Sea <math> \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 1 & 5 \end{pmatrix}</math> una permutación de <math>\textsf{S}_5</math>.
 
Notemos que la (función) <math>\sigma</math> es tal que <math>\sigma(3)=3</math> y <math>\sigma(5)=5</math>.
 
[[Archivo:Ciclo02.jpg|Centrado|360px]]
 
 
Es decir que <math>\sigma</math> mueve el <math>1</math>, <math>2</math> y <math>4</math> de manera cíclica, mientras que deja fijos a <math>3</math> y <math>5</math>. Tales permutaciones se llaman \textit{ciclos}, que definiremos de manera general más adelante.
<hr>
 
{{Ejmpl|Ejemplo B}} <!-- ejemCiclo02 -->
Sea <math> \sigma =
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 5 & 3 & 6 & 1& 4 & 7
\end{pmatrix}</math> una permutación de <math>\textsf{S}_7</math>.
En este caso, los puntos que no se mueven son 3 y 7. ¿Qué pasa con aplicaciones sucesivas de <math>\sigma</math> a puntos que no quedan fijos?
<center><math>1 \overset{\sigma}{\longrightarrow} 2 \overset{\sigma}{\longrightarrow} 5 \overset{\sigma}{\longrightarrow} 1. \qquad 4 \overset{\sigma}{\longrightarrow} 4 \overset{\sigma}{\longrightarrow} 4.</math></center>
En este caso tenemos dos puntos fijos y dos ciclos.
 
[[Archivo:Ciclo01.jpg|Centrado|300px]]
<hr>
 
Sea <math>\sigma</math> una permutación de un conjunto <math>X</math> finito con <math>n</math> elementos. Sea <math>x</math> un elemento cualquiera de <math>X</math>. Consideremos la sucesión obtenida por aplicaciones sucesivas de <math>\sigma</math> a un punto <math>x</math> de <math>X</math> y a sus imágenes.
<center><math>x_1:= x \text{ y } x_{r+1} = \sigma(x_r), r \ge 1.</math></center>
Como <math>X</math> es un conjunto finito, los términos de la sucesión
<center><math>x_1=x, x_2, \dots, x_k, \dots </math></center>
no pueden ser todos diferentes. Por lo que hay <math>s</math> y <math>r</math>, con <math>1 \le s<r</math>, tales que <math>\sigma(x_r) = x_s</math>. Si <math>s>1</math>, entonces <math>\sigma(x_r) = x_s=\sigma(x_{s-1})</math>, lo que implica que <math>x_r=x_{s-1}</math>, o sea <math>r = s-1</math>, lo que es una contradicción ya que <math>r>s</math>. Luego <math>s=1</math>, o sea <math>x_r = x_1</math>.
 
Introduciremos una terminología que nos ayudará a estudiar los ``ciclos'' de una permutación.
Si hubiera un elemento con orden 6, el grupo sería cíclico. Lo que nos deja como
posibles ordenes para subgrupos 2 y 3, por lo que esos subgrupos
necesariamente tienen que ser cíclicos.
 
<!-- defCicloPerm -->
Supongamos que todos los elementos diferentes del neutro tuvieran orden 2. En
<div style="background: rgb(240,240,240); border: 1px solid navy; width:80%; margin:10pt 80pt 10pt 50pt; padding: 1.5ex; font-family: Arial; font-style: italic;" class="theorem">
tal caso, como <math>x^{2}=e</math>. sigue que <math>x =x^{-1}</math> para
<span style="font-family: Arial; font-weight:bold; font-style: normal;">Definición. (Ciclos)</span>
todo <math>x</math>. Además, <math>(xy)^{2}=xyxy=e</math> implicará que
Sea <math>X</math> un conjunto con <math>n</math> elementos. Sea <math>x_1, x_2, \ldots, x_k</math> una sucesión de <math>k</math> elementos diferentes de <math>X</math>, <math>k \le n</math>. Llamaremos <b>ciclo</b> (de largo <math>k</math>) o <b>k--ciclo</b> a la permutación <math>\sigma</math> de <math>X</math> que deja fijo a todos los elementos de <math>X</math> que no aparecen en la sucesión y tal que
<math>yx=x^{-1}y^{-1}=xy</math>, o sea que el grupo sería abeliano. Sean
<center><math>
<math>a</math> y <math>b</math> dos de esos elementos de orden
x_{i+1} = \sigma(x_i), \text{ cuando } i < k, \qquad \text{y} \qquad \sigma(x_k) = x_1.</math></center>
<math>2</math>. Entonces, <math>H = <a,b></math> sería un subgrupo de
Es decir que
<math>G</math>. Por la conmutatividad, <math>H</math> consistiría
<center><math>x_1 \overset{\sigma}{\longrightarrow} x_2 \overset{\sigma}{\longrightarrow} \dots \overset{\sigma}{\longrightarrow} x_{k-1} \overset{\sigma}{\longrightarrow} x_k \overset{\sigma}{\longrightarrow} x_1. </math></center>
exactamente de los productos de la forma <math>a^ib^j</math>
<math>i,j=0,1</math>.Simbolizamos o sea,por <math>H=(x_1\{e,ax_2\,b\dots\,ab\}x_k)</math>. Pero estoa esese ciclo.
imposible, ya que no puede haber un subgrupo de orden 4 en un grupo de orden
6. Conclusión: no todos los elementos pueden tener orden 2; lo cual implica que
debe haber al menos un elemento de orden 3, digamos <math>a</math>.
 
Llamamos <b>transposición</b> a un ciclo de largo 2.
Como <math>a</math> tiene orden 3, el subgrupo <math><a>=
</div>
\{e,a,a^{2}\}</math> también tiene orden 3, lo que implica <math>a</math> y
<math>a^{2}</math> son elementos con orden 3. ¿Habrá algún otro subgrupo de
orden <math>3</math>? Supongamos que sí y que se tratara de
<math>H</math>. Como este subgrupo sería distinto de <math><a></math>,
tendríamos que <math> H \cap <a> = \{e\}</math>. Por lo tanto, calculando la
cantidad de elementos del producto <math>H \, <a></math>, tendríamos que
<center><math>|H <a>| =
\dfrac{|H||<a>|}{|H \cap <a>|} = 9;</math></center> lo cual es imposible. Por lo
tanto, hay solamente un subgrupo de orden <math>3</math> y todos los
elementos restantes, diferentes del neutro, deberán tener orden 2.
 
Veremos, más adelante, que cada permutación puede expresarse como un producto de ciclos. Antes, presentaremos algunas nociones que nos ayudarán en el estudio de los ciclos de una permutación.
Sea <math>b</math> uno de ellos, entonces la clase lateral derecha
<math><a>b</math> tendrá tres elementos y, por ser disjunta con
<math><a></math>, coincide con el complemento de <math><a></math>. por lo
que contendrá a todos los elementos de orden 2. Se tiene así que
<center><math>G=\{e,a,a^2, b, ab, a^2b\}.</math></center> Para completar la
estructura de <math>G</math>. bastará con conocer el producto de
<math>ba</math>.
 
<ul>
<li> (<b>Puntos fijos de una permutación</b>)
<li> Si <math>ba=e</math> entonces, <math>b</math> es el inverso de
Llamamos <b>punto fijo</b> o <b>elemento fijo</b> por (o de) una permutación <math>\sigma</math> en <math>\textsf{S}_X</math> a un punto <math>x</math> de <math>X</math> tal que <math>\sigma(x) = x</math>.
<math>a</math> y tendría su mismo orden, lo que no puede ser.
 
Hay ejemplos de permutaciones y de transformaciones que no tienen puntos fijos, mientras que la identidad deja a todos los puntos fijos. En el ejemplo A, los puntos fijos son 3 y 5.
<li> Si <math>ba=a</math> entonces <math>b=e</math>. imposible.
 
<li> (<b>Soporte de una permutación.</b>) Llamamos soporte de la permutación <math>\sigma</math> al subconjunto <math>S_{\sigma}</math> de <math>X</math> formado por todos los elementos de <math>X</math> que no quedan fijos por <math>\sigma</math>.
<li> Si <math>ba=a^{2}</math> entonces, <math>b=a</math>. imposible.
<center><math>S_\sigma := \{ x \in X: \sigma(x) \neq x\}.</math></center>
 
En otras palabras, el soporte de una biyección <math>\sigma</math> es el complemento (como conjunto) del conjunto de elementos fijos por <math>\sigma</math>. Coloquialmente, decimos que la permutación \textit{mueve} a los puntos de su soporte.
<li> Si <math>ba=b</math>. entonces <math>a = e</math>. imposible.
 
El soporte del permutación del ejemplo B es <math>S_\sigma= \{1,2,4,5,6\}</math>.
<li> Si <math>ba=ab</math>. el grupo sería abeliano y el elemento
</ul>
<math>ab</math> tendría orden 6, por lo que el grupo sería cíclico; imposible.
<hr>
 
{{Ejmpl|Observaciones}}
<li> Por lo tanto la única posibilidad es que <math>ba=a^2b</math>
<ul>
<li> Un ciclo de largo 1 indica que todos los elemento de <math>X</math> quedan fijo por la permutación, o sea que se trata de la identidad.
 
<li> Una permutación puede dar origen a uno o más ciclos.
 
<li> Si <math>\sigma= (x_1\,x_2\,\dots\,x_r)</math>, entonces el soporte de <math>\sigma</math> es precisamente <math>\{x_1,x_2,\dots,x_k\}</math>.
 
<li> Llamamos \textit{permutación cíclica} de <math>I_n</math> al ciclo <math>(1 2 3 \dots n)</math> de <math>\textsf{S}_n</math>. \index{permutación!cíclica}
 
<li> Sea <math>\sigma = (x_1\,x_2\, \dots \, x_r)</math> un <math>r</math>--ciclo. Se tiene que
<center><math>x_2= \sigma(x_1), \quad x_3=\sigma(x_2)= \sigma^2(x_1), \quad \dots, x_k = \sigma^{k-1}(x_1), \dots.</math></center>
Observemos que <math>\sigma^r(x_1) = x_1</math>.
</ul>
 
Los razonamientos anteriores muestran que la única posibilidad de grupo de
orden 6, aparte del cíclico, será entonces <math>\textsf{S}_3</math>. Resumiendo
tenemos lo siguiente:
 
{{Ejmpl|Permutaciones disjuntas}}
<div style="background: white; border: 1px solid navy; width:80%; margin:10pt
Decimos que dos permutaciones son <b>disjuntas</b> cuando sus soportes lo sean.
80pt 10pt 50pt; padding: 1.5ex; font-family: Arial; font-style: normal;">
<hr>
<center><b> Grupos de orden 6 </b></center> Un grupo <math>G</math> con
seis elementos es isomorfo a uno de los dos grupos siguientes: <ol type = "i">
<li> el grupo cíclico de orden 6, o
 
Observemos que cuando dos permutaciones son disjuntas, los puntos que una mueva, la otra los deja fijos. Esto implica que el producto de las dos biyecciones es independiente del orden del producto.
<li> el grupo <math>\textsf{D}_6=\textsf{S}_3</math>. caracterizado como <math><a,b: a^3=e,
b^2=e, ba=ab^2></math>. </ol></div>
 
{{Caja|Permutaciones disjuntas conmutan.}}
== Clasificación de los Grupos Abelianos de orden 8 ==
 
Observemos que una biyección y su inversa tienen igual soporte.
Sea <math>G</math> un grupo abeliano tal que <math>|G|=8</math>. Si hay un
elementoTambién ensi <math>G\sigma</math> cuyo orden sea igual ay <math>|G|\tau</math>, son disjuntas se tiene que
<center><math>S_{\sigma\tau}= S_\sigma \cup S_\tau</math></center>
tiene que <math>G</math> es un grupo cíclico de orden 8.
 
Supongamos que <math>G</math> no es cíclico. Entonces, todos los elementos
no nulos deben tener ordenes 2 o 4.
 
Veremos, a continuación, lo anunciado más arriba.
Suponer que <math>a</math> de <math>G</math> tiene orden <math>4</math>
y sea <math>H</math> el subgrupo generado por <math>a</math>.
Supongamos que haya otro elemento de orden 4, digamos <math>b</math> tal
que <math>b </math> no está en <math>H</math>. Sea <math>K =
<b></math>. Si <math>H \cap K =
\{e\}</math>, por el teorema de la cardinalidad de productos, tenemos que
{{Eqn|<math>|HK| = |H|\,|K|/|H \cap K|= 16.</math>}}
Lo que es imposible, luego <math>H \cap K \neq \{e\}</math>. Entonces, <math>|H \cap K| = 2</math> o 4. No puede ser 4, porque entonces <math>H=K</math>. Por lo que <math>|H \cap K| =2</math>.
 
<b>Proposición 6. </b> <!--propSim08 --> <i> Cada permutación de <math>\textsf{S}_n</math> es un ciclo o un producto único de ciclos disjuntos, excepto por el orden y 1--ciclos.</i>
De donde sigue que <math>|HK|=8,</math> o sea que <math>G = HK</math>.
<ul><i>
¿Qué elementos hay comunes en la intersección? Observemos que <math>H
Demostración: </i>(Por inducción sobre la cantidad de elementos en <math> S_\sigma</math>.)
\cap K <H, K</math>, por lo que <math>H \cap K =
\{a^2\} = \{b^2\}</math>. Observemos que entonces, <math>ab</math> es un elemento que no está en <math>H</math>, porque <math>ab = a^k</math>
implica que <math>b</math> estaría en <math>H</math>. Se tiene que
<math>(ab)^2 = a^2b^2=a^2a^2=a^4 =e</math>, por lo que hay un elemento de
<math>G</math> con orden 2. Sea <math>L = <ab></math>. Entonces <math>H
\cap L = \{e\}</math>, y <math>|HL|=8</math> o sea que <math>G=HL</math>. Sigue
entonces, de la proposición acerca del producto de subgrupos normales, que
<math>G \cong H \times L \cong \textsf{C}_4 \times \textsf{C}_2</math>.
 
Si <math>|S_\sigma|=0</math>, entonces <math>\sigma = id</math> que es un producto de ciclos disjuntos de largo 1.
Si fuera de <math>H</math> todos los elementos tuvieran orden 2. Escogiendo,
uno cualesquiera de ellos, podríamos repetir el argumento anterior. Supongamos
que todos los elementos no nulos tuvieran orden 2. Seleccionando tres de ellos,
digamos, <math>a</math>, <math>b</math> y <math>c</math>, tendríamos que
{{Eqn|<math>G
\cong \textsf{C}_2
\times \textsf{C}_2 \times \textsf{C}_2.</math>}}
 
Sea <math>|S_\sigma| >0</math> y sea <math>x</math> en <math>S_{\sigma}</math> tal que <math>\sigma(x) \neq x</math>. Sea <math>k</math> el menor entero positivo tal que <math>\sigma^k(x) = x</math>. Sea <math>\tau</math> el ciclo <math>(x\, \sigma(x) \, \dots \, \sigma^{k-1}(x))</math>. Sea <math>x</math> en <math>S_{\sigma}</math>, entonces, razonado con el prueba del inverso, <math>(\sigma\tau^{-1})(x) = x</math>. Por lo que <math>\sigma \tau^{-1}</math> fija cada elemento de <math>J= \{x, \sigma(x), \ldots, \sigma^{k-1}(x)\}</math>. Si <math>x</math> no está en <math>J</math>, entonces <math>\tau(x) = x</math>, por lo que <math>(\sigma\tau^{-1})(x) = \sigma(x)</math>. Luego, <math>(\sigma\tau^{-1})(x) \neq x</math>, ssi, <math>\sigma(x)\neq x</math>. Esto implica que <math>S_{\sigma\tau^{-1}} = S_\sigma \setminus J \subsetneq S_\sigma</math>. Por la hipótesis de inducción, tenemos que <math>\sigma\tau^{-1}</math> debe ser igual a un producto de ciclos disjuntos, <math>\tau_1\tau_2 \dots \tau_s</math>, que como fijan <math>J</math> deben ser disjuntos de <math>\tau</math>. Luego
<div style="background: white; border: 1px solid navy; width:80%; margin:10pt
<center><math>\sigma = \tau_1\tau_2 \dots \tau_s \tau.</math></center>
80pt 10pt 50pt; padding: 1.5ex; font-family: Arial; font-style: normal;" >
<center><b>Grupos abelianos de orden 8</b></center> Un grupo abeliano de
orden 8 es <ol type="i"> <li> un grupo cíclico de orden 8, o <li> el producto de un
grupo cíclico de orden 4 con uno de orden 2, o <li> el producto de tres grupos
cíclicos de orden 2 cada uno. </ol> </div>
 
Veamos ahora la unicidad. Supongamos que <math>\sigma = \sigma_1 \cdots \sigma_r</math>. Entonces, <math>S_\sigma = S_{\sigma_1} \cup S_{\sigma_2} \dots \cup S_{\sigma_r}</math>. Además, <math>i \neq j</math> implica que <math>S_{\sigma_i} \cap S_{\sigma_j} = \emptyset</math>. Cada <math>x</math> en <math>S_\sigma</math> pertenece por lo tanto a un único <math>S_{\sigma_i}</math>, <math>i=1,2,3, \dots, r</math>. Por lo que <math>\sigma_i = (x\, \sigma(x) \, \sigma^2(x) \, \ldots )</math> ya que <math>\sigma</math> coincide con <math>\sigma_i</math> en <math>S_{\sigma_i}</math>. Es decir que los ciclos quedan únicamente determinados por <math>\sigma</math>.
== Clasificación de los Grupos de orden 9 ==
{{QED}} </ul>
<hr>
 
==== Transitividad de la acción ====
Sea <math>G</math> un grupo cuyo orden es <math>9</math>. Si
<math>G</math> tiene un elemento de orden 9, <math>G</math> es el grupo
cíclico de orden 9, <math>\textsf{C}_9</math>. En caso contrario, todos los
elementos diferentes del neutro deben tener orden 3. Sean <math>H=
<a></math> y <math>K = <b></math> dos subgrupos diferentes generados por elementos de orden 3. Se tiene que <math>H \cap K =
\{e\}</math>, por lo que <math>|HK| =|H||K|=9</math>. Es decir que
<math>G=HK</math>. Primeramente, probaremos que <math>H</math> es
normal en <math>G</math>. Es decir que, para todo <math>g</math> en
<math>G</math> se cumple que <math>gag^{-1}</math> es un elemento de
<math>H</math>. El típico elemento de <math>G</math> es
{{Eqn|<math>g=a^{i} b^j\quad \text{ con }\quad 0 \le i,j <3.</math>|*}}
Observando que <math>(a^{i}b^j) a (a^{i}b^{j}) ^{-1} = a^{i}
b^j a( b^j)^{-1}(a^{i})^{-1},</math> vemos que basta verificar que
<math>bab^{-1}</math> está en <math>H</math>.
 
Sea <math>X</math> un conjunto finito tal que <math>|X|=n</math>. Dados dos puntos <math>x</math>, <math>y</math>, sea <math>\tau_{x,y}</math> definida por
Se tiene que
<center><math>
{{Eqn|<math>bab^{-1} = a^ib^j.</math>|**}}
\tau_{x,y}(z) = \begin{cases}
para <math>i,j</math> tales que <small><math>0 \le i, j <3</math></small>. Queremos probar, que
y, & \text{si } z = x ; \\
necesariamente <math>j=0</math>. Recordemos, que como los elementos
x, & \text{si } z = y ; \\
<math>x</math> diferentes del neutro son de orden 3, tenemos que
z, & \text{si } z \neq x,y.
<math>x^{-1}=x^{2}</math>. Además, <math>ab \neq e</math> y <math>ba \neq
\end{cases}
e</math>, ya que, en caso contrario, tendríamos que <math>
<a> = <b/math></mathcenter>
Claramente <math>\tau_{x,y}</math> es una permutación de <math>X</math>, cuando <math>n \ge 2</math>.
<ul>
Cuando un grupo de permutaciones, tiene la propiedad de que dado <math>x</math>, <math>y</math> hay un elemento del grupo que envía un punto en el otro, decimos que el grupo \textit{actúa transitivamente} sobre el conjunto.
<li> Si <math>i=0</math>, entonces (**) implica que <math>bab^{-1} = b^j</math> lo que implica que <math>a = b^{-1}b^{j}b \in <b></math>, lo que no puede ser. Luego, <math> i> 0</math>.
 
Veremos, a continuación, que <math>\textsf{S}_n</math> actúa transitivamente en el conjunto de sucesiones de <math>r</math>--elementos diferentes de <math>X</math>, clásicamente llamadas las <math>r</math>--permutaciones de un conjunto con <math>n</math> elementos.
<li> <math>bab^{-1} = ab \implies abab^{-1} = a^{2}b \implies abab^{2} =ab \implies abab=a^{2}</math>. Esto dice que <math><ab> = \{e, ab, (ab)^2\}
\cap \{e,a,a^2\} \neq {e}</math>. Esto dice que <math>ab=a</math> o que
<math>ab=a^{2}</math>, y ambas posibilidades son contradictorias a las
elecciones de <math>a</math> y <math>b</math>.
 
Sean <math>\alpha=(x_1, x_2, \dots, x_r)</math> y <math>\beta = (y_1, y_2, \dots, y_r)</math> dos sucesiones de <math>r</math> elementos diferentes. Sea <math>(x_{r+1}, \dots ,x_n)</math> una sucesión formada por los elementos del complemento de <math>\alpha</math>. Sea <math>(y_{r+1}, \dots , y_n)</math> la sucesión análoga para <math>\beta</math>.
<li> <math>bab^{-1} = ab^{2}=ab^{-1}</math> implica que <math>ba = a</math>,
Entonces, definimos una función que asigna a cada <math>x_i</math>, el correspondiente <math>y_i</math>. Claramente, tal función es la permutación deseada.
o sea que <math>b=e</math>.
 
{{Ejmpl|Ejemplo}}
<li> <math>bab^{-1} = a^{2}b \implies a(bab^{2}) = a^{2}b \implies ab ab^{2} = a^{2}b \implies abab = a^{2}</math>, lo que sabemos que es contradictorio.
Sean <math>n=5</math>, <math>\alpha = (1,3,5)</math> y <math>\beta = (4,2,3)</math>, entonces una permutación satisfaciendo lo indicado arriba es
<center><math>\sigma =
\begin{pmatrix}
1 & 3 & 5 & 2 & 4 \\
4 & 2 & 3 & 1 & 5
\end{pmatrix} =
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 2 & 5 & 3
\end{pmatrix}.</math></center>
<hr>
 
Esta construcción será usada más adelante para obtener permutaciones con una asignación parcial de sus valores.
<li> <math>bab^{-1} = a^{2}b^2 \implies bab^{2}= a^{2}b^{2} \implies ba
= a^{2} \implies b=a </math>. Una contradicción.
</ul>
Como todos los casos con <math>j>0</math> conducen a contradicción, debemos concluir que <math>j=0</math>. Lo que prueba que <math>H</math> es normal en <math>G</math>.
 
=== Ejercicios ===
Por la simetría de la situación, tenemos que <math>K</math> es, también,
normal en <math>G</math>. Por la proposición \ref{propInternoNormales},
tenemos que <math>G=HK \cong H \times K</math>.
 
<ol>
Es decir que cualquier grupo con 9 elementos es el grupo cíclico de 9 elementos,
<li> Sean <math>\sigma</math>, <math>\tau</math> y <math>\eta</math> permutaciones de <math>\textsf{S}_7</math>,
<math>\textsf{C}_9</math>, o el producto de dos grupos cíclicos de orden 3 cada uno.
con <math>\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Resumiendo,
3& 2 & 4& 7 & 5 & 6 & 1\end{pmatrix}</math>, \\ <math>\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
{{Caja|<math>|G|=9 \implies G \cong \textsf{C}_9 \text{ o } G \cong \textsf{C}_3
3& 2 & 4& 7 & 6 & 5 & 1\end{pmatrix}</math> y <math>\eta = \begin{pmatrix}
\times \textsf{C}_3. </math>}} Además, lo anterior implica que no hay grupos no
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
conmutativos de orden 9.
1 & 5 & 4& 3 & 2 & 6 & 7\end{pmatrix}</math>.
Expresar cada una de esas permutaciones como un producto de permutaciones disjuntas.
 
<li> Sean <math>\sigma = (123)</math>, <math>\eta=(234)</math>, <math>\tau_1 = (45)</math> y <math>\tau_2 = (13)</math> permutaciones de <math>\textsf{S}_6</math>. Expresar cada uno de esos ciclos en la forma matricial.
== Caracterización de los Grupos Cíclicos Finitos ==
 
<li> Sean <math>\sigma = (123)</math>, <math>\eta=(234)</math>, <math>\tau_1 = (45)</math> y <math>\tau_2 = (13)</math> permutaciones de <math>\textsf{S}_6</math>. Realizar las operaciones indicadas.<br>
Sabemos que cada elemento <math>g</math> de un grupo finito tiene un orden
que es un divisor del orden del grupo. Introduciremos la noción de ''exponente'' de
un grupo que nos ayudará en la caracterización de los grupos cíclicos finitos.
 
<math>\begin{matrix}
{{DefRht|Exponente de un Grupo| Sea <math>G</math> un grupo finito.
a. & \eta \sigma. \qquad & &
Llamamos '''exponente''' del grupo al menor entero positivo <math>r</math> tal
b. & \sigma \eta. \qquad & &
que <math>x^r=e</math> para todo elemento <math>x</math> dell grupo. Lo
c. & \sigma\tau_1 . \qquad \\
denotaremos por <math>\exp(G)</math>.}}
d. & \sigma\tau_2 .\qquad & &
e. & \sigma\eta\sigma .\qquad & &
f. & \eta\tau_2 . \qquad
\end{matrix}</math>
 
<li> Suponer que las permutaciones son de <math>\textsf{S}_5</math>. Sea <math>\sigma = (135)</math>. Hallar <math>\sigma^2</math>, <math>\sigma^3</math>, <math>\sigma^4</math>, <math>\sigma^5</math>, <math>\sigma^6</math> y <math>\sigma^{100}</math>. Probar, además, que <math>\sigma^{-1} = \sigma^2</math>.
Por ejemplo, <math>exp(\textsf{S}_3)=6</math>, <math>exp(\textsf{D}_8)= 4</math>.
Como <math>x^{\exp(G)}=e</math>, tenemos que <math>exp(G)</math> es un
múltiplo de <math>o(x)</math>.
 
<li> Suponer que las permutaciones son de <math>\textsf{S}_5</math>. Sean <math>\tau_1 = (24)</math>, <math>\tau_2 = (13)</math> y <math>\tau_3 = (34)</math>.
Un grupo cíclico <math>G</math> es un grupo tal que <math>exp(G) = |G|</math>. El objetivo de esta sección es mostrar que esa relación caracteriza a los grupos cíclicos.
<ol type="a">
<li> Probar que los cuadrados de esas transposiciones son la identidad.
<li> Probar que cada una de esas transposiciones tiene un inverso igual a ellas mismas.
<li> Simplificar <math>\tau_1 \tau_2 \tau_1^{-1}</math>.
<li> Simplificar <math>\tau_1 \tau_3 \tau_1^{-1}</math>.
</ol>
 
<li> <ol type="a">
Necesitaremos el siguiente lema que provee una caracterización para el
<li> Sea <math>\tau = (i\, j)</math> una transposición de <math>\textsf{S}_n</math>. Probar que <math>\tau^2 = id</math> y que <math>\tau^{-1} = \tau</math>.
exponente.
 
<li> Sea <math>\sigma = (i\, j\, k)</math> un 3--ciclo de <math>\textsf{S}_n</math>. Probar que <math>\sigma^3= id</math> y que <math>\sigma^{-1} = \sigma^{2}</math>.
<b>Lema. </b> <i>Sea <math>G</math> un grupo finito abeliano y sea
<li> ¿Cómo se podrían generalizar lo anterior a <math>k</math>--ciclos de <math>\textsf{S}_n</math>? Conjeturar y tratar de probar.
<math>g</math> un elemento cuyo orden es maximal entre los ordenes de los
</ol>
elementos de <math>G</math>. Entonces, <math>\exp(G) = o(g)</math>. </i>
 
<li> Probar que en <math>\textsf{S}_5</math>, se tiene las siguientes relaciones:
<ol type="a">
<li> <math>(243) = (24)(34)</math>.
 
<li> <math>(5421) = (54)(42)(21)</math>.
 
<li> <math>(12345) = (12)(23)(34)(45)</math>.
</ol>
¿Qué se puede conjeturar?
 
<li> Construir la tabla de <math>\textsf{S}_2</math>, el grupo simétrico del conjunto <math>X = \{1,2\}</math>. Comparar la tabla del grupo con la tabla de la multiplicación de <math>\Z_2</math>.
 
<li> Verificar la tabla de <math>\textsf{S}_3</math>. Determinar todos los subconjuntos cerrados de <math>\textsf{S}_3</math>. Comparar la tabla de <math>\textsf{S}_3</math> con la tabla de las simetrías de un triángulo equilátero <math>\textsf{D}_6</math>.
 
<li> Sea <math>G</math> un subgrupo de un grupo simétrico <math>\textsf{S}_X</math> y sean <math>x</math>. Probar que el conjunto de permutaciones en <math>G</math> que fijan <math>x</math>, es un subgrupo de <math>G</math> denotado por <math>G\cdot x</math>.
</ol>
 
== Propiedades de los Ciclos de Permutaciones ==
 
Sea <math>\sigma</math> un ciclo de largo <math>k</math> en <math>\textsf{S}_n</math>, digamos que
<center><math>\sigma = (x_1\, x_2 \, \dots \, x_k).</math></center>
Mostraremos que cualquier punto que aparece en el ciclo, definen al mismo ciclo.
Es decir que un ciclo no tiene una representación única, ya que cualquiera de los siguientes representa el mismo ciclo.
<center><math>\begin{array}{l}
(x_1\, x_2\, \dots \, x_{k-1} \, x_k) \\
(x_2\, x_3 \, \dots \,x_{k-1} \, x_k \, x_1) \\
\quad \quad \quad \vdots \\
(x_{k-1} \, x_k \, \dots \, x_{k-3} \, x_{k-2}) \\
(x_k \, x_1, \dots \, x_{k-2} \, x_{k-1} )\\
\end{array}</math></center>
 
En efecto, tomemos como punto inicial a <math>x_i</math>, entonces por sucesivas aplicaciones de <math>\sigma</math> obtenemos la sucesión
<center><math>x_i, \sigma(x_i), \sigma^2(x_i), \ldots</math></center>
Como <math>x_i = \sigma^{i-1}(x_1)</math>, tenemos que la sucesión anterior es
<center><math>x_i=\sigma^{i-1}(x_1), \sigma^{i}(x_1), \sigma^{i+1}(x_1), \dots</math></center>
Es decir una sucesión de puntos que aparecen en el ciclo que se inicia en <math>x_1</math>.
Además, <math>\sigma^r(x_i) = \sigma^r(\sigma^{i-1}(x_1))= \sigma^{i-1}(\sigma^r(x_1))=\sigma^{i-1}(x_1)= x_i</math>.
Si hubiera un <math>s<r</math> tal que <math>\sigma^s(x_i) = x_i</math>, tendríamos que
</math>\sigma^{s+r-1}(x_1) = \sigma^{i-1}(x_1)</math>, de donde <math>\sigma^s(x_1)=x_1</math>, lo que no puede ser.
Sea <math>\tau</math> el ciclo de largo <math>r</math> que se inicia en <math>x_i</math>. Claramente, el soporte de <math>\tau</math> es igual al soporte de <math>\sigma</math>. Además, para cada <math>j</math> tenemos que
<math>\tau(x_j) = \tau (\sigma_{j-1}(x)) = \sigma^j(x_1) = \sigma(x_j)</math>. Es decir que <math>\tau =\sigma</math>.
 
{{Ejmpl|Cantidad de <math>k</math>-ciclos}}
 
¿Cuántos ciclos hay en <math>\textsf{S}_n</math> de largo <math>k</math>, <math>2 \le k \le n</math>?
 
Las <math>k</math> posiciones en un <math>k</math>--ciclo, pueden llenarse de
<center><math>n * (n-1) * (n-2) * \dots *(n-k+1)</math></center>
diferentes maneras. Como cada <math>k</math>-ciclo puede escribirse de <math>k</math> diferentes maneras, tenemos que
<center>
Cantidad de k--ciclos = <math>\frac{n * (n-1) * (n-2) * \dots *(n-k+1)}{k}. </math>
</center>
 
{{Ejmpl|Orden de Ciclos}}
Sea <math>\sigma = (x_1\, x_2\, \dots\, x_r)</math>. Los cómputos anteriores muestran que para todo <math>i</math> se cumple que <math>\sigma^r(x_i) = x_i</math>. Si <math>x</math> no está en <math>S_{\sigma}</math>, <math>x</math> es fijo por <math>\sigma</math> luego <math>\sigma^r(x) = x</math>. Lo anterior prueba la siguiente proposición.
 
<b>Proposición 7. </b> <!--- propSim06 --> <i> Un <math>r</math>--ciclo tiene orden <math>r</math> como elemento del grupo <math>\textsf{S}_n</math>. </i>
 
En la terminología de la teoría de grupos, el subgrupo generado por un <math>r</math>--ciclo <math>\sigma</math> es un subgrupo cíclico de orden <math>r</math>. Como hay ciclos de largo <math>k</math>, para todo <math>k</math>. <math>2 \le k \le n</math>, tenemos que <math>\textsf{S}_n</math> contiene subgrupos ciclos de orden <math>k</math>. La siguiente proposición sigue directamente de la teoría de grupos cíclicos, pero, daremos también una demostración directa
 
<b>Proposición 8. </b> <!-- propSim07 --> <i>Sea <math>\sigma = (x_1\, x_2\, \dots \, x_r)</math> un <math>r</math>--ciclo de <math>\text{S}_n</math>. Se cumple que
<ol type="a">
<li> <math>\sigma^k</math> es un ciclo tal que <math>\sigma^{k} (x_i) = (x_{i+k})</math> (subíndices computado los índices mayores que <math>r</math> módulo <math>r</math>) .
<li> Si <math>\textsf{mcd}(k,r)=1</math> entonces <math>\sigma^k</math> es un <math>r</math>-ciclo.
<li> Si <math>\textsf{mcd}(k,r)=d>1</math> entonces <math>\sigma^k</math> es un producto de <math>d</math> ciclos de largo <math>r/d</math>
</ol> </i>
<ul><i>
Demostración: </i>
<ol type="a">
<li> Como <math>\sigma^k(x_i) = \sigma{^k}(\sigma^{i}(x_1))= \sigma^{k+1}(x_1) = x_{i+k}</math>, tenemos la parte a).
 
<li> Cuando <math>\textsf{mcd}(k,r) = 1</math>, entonces para todo <math>j</math>, <math>1 \le j \le r</math>, los enteros
<center><math>1+kj</math></center>
son enteros diferentes módulo <math>r</math>.
 
En efecto, si <math>1+kj \equiv1+kj' \pmod{r}</math>, se tendría que <math>k(j-j') \equiv 0 \pmod{r}</math>. Como <math>p</math> no divide a <math>k</math>, se tiene que <math>j-j' \equiv 0 \pmod{r}</math>.
 
<li> Cuando <math>\textsf{mcd}\{k,r\}=d</math>, se tiene que <math>(\sigma^{k})^{r/d} =(\sigma^r)^{k/d} = e</math>. Lo que prueba la afirmación sobre el orden de <math>\sigma_k</math>. El resto sigue de forma inmediata.
</ol> {{QED}} </ul>
<hr>
 
{{Ejmpl|Ejemplo}}
Sea <math>\sigma = (1\, 2\, 3\, 4\, 5\, 6\, 7\, 8)</math>. Entonces,
<center><math>\sigma^2= (1\, 3\, 5\, 7 )(2 \, 4\, 6\, 8),\quad \sigma^3=(1\, 4\, 7 \,2 \, 5 \, 8\, 3 \, 6),\quad \sigma^2=(1\,5) (2\,6) (3\,7)(4\,8). </math></center>
<hr>
 
 
{{Ejmpl|Inversa de un ciclo}}
La permutación inversa de un ciclo es un ciclo que hace un recorrido inverso de los puntos del ciclo original.
<center><math>(x_1 \, x_2\, \dots \, x_r)^{-1} = (x_1\, x_k\, x_{k-1} \dots \, x_2 ).</math></center>
Notemos que se tiene
<center><math>(x_1\, x_k\, x_{k-1} \dots \, x_2 ) = (x_k\, x_{k-1} \dots \, x_2 \, x_1) = .</math></center>
 
Observemos también que la inversa de una permutación tiene el mismo orden y soporte que la permutación. Tales resultados siguen en forma inmediata de la proposición anterior aplicada a <math>\sigma^{r-1} =\sigma^{-1}</math>.
 
{{Ejmpl|Conjugado de un Ciclo}}
 
<b>Lema de Conjugación </b> <!-- lemaConjCiclo --> <i> Sea <math>\sigma = (x_1 \, x_2\, \dots \, x_k)</math> un ciclo de <math>\textsf{S}_n</math> y sea <math>g</math> una permutación cualquiera de <math>\textsf{S}_n</math>. Entonces, el conjugado de <math>\sigma</math> por <math>g</math>, <math>g\sigma g^{-1}</math>, es el ciclo de igual largo
<center><math>(g(x_1) \, g(x_2) \, \dots \, g(x_k)).</math></center>
</i>
<ul> <i>
Demostración: </i> Sea <math>1 \le i < k</math>. Entonces
Demostración: </i> Debemos probar que <math>h^{o(g)} =e</math> para todo <math>h</math> en <math>G</math>. Supongamos que tenemos descomposiciones en factores primos de <math>o(g)</math> y <math>o(h)</math> dadas por {{Eqn|<math>o(g) = p_1^{r_1}p_2^{r_2} \dots p_k^{r_k} \text{ y } o(h) = p_1^{s_1}p_2^{s_2}\dots p_k^{s_k},</math>}}
<center><math>g(\sigma(g^{-1}((g(x_i))) = g(\sigma(x_i)) = g(x_{i+1}).</math></center>
donde los <math>p_i</math>'s son primos diferentes entre si y los exponentes <math>r_i</math>'s, <math>s_i</math>'s son mayores o iguales que cero.
Además,
<center><math>g(\sigma(g^{-1}((g(x_k))) = g(\sigma(x_k)) = g(x_{1}).</math></center>
Lo que prueba que
<center><math>
g\sigma g^{-1} = (g(x_1) \, g(x_2) \, \dots \, g(x_k)).
</math></center>
{{QED}} </ul> <hr>
 
{{Ejmpl|Ejemplo}}
Si <math>h^{o(g)} \neq e</math>, se tendría que habría un <math>s_i>r_i</math>, sin perdida de generalidad, podemos suponer que <math>s_1 > r_1</math>. Sean <math>u =p_1^{r_1}</math>, <math> v= p_2^{s_2}\dots p_k^{s_k}</math>, <math>g'= g^u</math> y <math>h'= h^v</math>. Entonces, tenemos que <math>o(h')= p_1^{s_1}</math> y <math>o(g') = p_2^{r_2} \dots p_k^{r_k}</math>.
Se tiene entonces que el máximo común divisor deSea <math>o(h')</math>\sigma y= <math>o(g'1354)</math> es 1, por lo queen <math>o(h'g') = o(h')o(g') = p_1^{s_1}p_2^{r_2} \dots p_k^textsf{r_kS} >o(g)_5</math>. Pero esto contradice la maximalidad deSea <math>og = (g23)</math>.
Entonces, <math>g \sigma g^{-1} = (g(1)\,g(3)\, g(5)\, g(4) ) = (1254)</math>.
{{QED}} </ul>
<hr>
 
{{Ejmpl|Ejemplo}}
Sea <math>\tau = (i\, j)</math> un transposición de <math>\textsf{S}_n</math>, <math>n > 2</math>.
Sea <math>g</math> una permutación tal que <math>g(i) = 1</math> y <math>g(j)=2</math>. Entonces,\
<center><math>g \tau g^{-1} = (g(i) \, g(j) ) = (12).</math></center>
Esto muestra que todos los 2--ciclos son conjugados con el ciclo <math>(12)</math>. Como la relación de conjugación es de equivalencia, sigue que dos transposiciones cualesquiera son siempre conjugadas entre si.
<hr>
 
<b>Proposición 9. (Orden de un producto de ciclos disjuntos) </b> <!--propSIm09 --> <i> Sean <math>\sigma</math> y <math>\tau</math> ciclos disjuntos. Entonces,
<!--- \label{propCarGC}-->
<math>o(\sigma \tau)</math> es igual mínimo común múltiplo de <math>o(\sigma)</math> y <math>o(\tau)</math>.
<b>Proposición. (Caracterización de Grupos Cíclicos) </b><i>Sea <math>G</math> un grupo finito abeliano. Entonces,
</i>
<math>G</math> es cíclico, ssi, <math>\exp(G)=|G|</math>.</i>
<ul><i>
Demostración: </i> Como <math>\sigma</math> y <math>\tau</math> son disjuntos, conmutan entre si. Luego, para cualquier <math>k</math> se cumple que <math>(\sigma \tau)^k = \sigma^k \sigma^k</math>. Sea <math>\eta = \sigma \tau</math>. Supongamos que <math>o(\sigma) = r</math>, que <math>o(\tau) = s</math> y que <math>o(\eta) =t</math>. Sea <math>m =\text{mcm}(r,s)</math>. Entonces,
Demostración: </i>Si <math>G=<g></math>, entonces
<center><math>\eta^m = (\sigma\tau)^m = \sigma^m \tau^m = id\, id = id,</math></center>
<math>exp(G)=o(g)=|G|</math>. Recíprocamente, supongamos que
ya que <math>exp(G)=|G|m</math>; entonces hayes un elementomúltiplo de los ordenes de <math>g\sigma</math> taly que<math>\tau</math>. Luego <math>t|m</math>.
 
<math>o(g)=exp(G)=|G|</math>, por lo que <math>G</math> es cíclico.
Si <math>x</math> está en <math>S_\sigma</math>, <math>\eta(x) = \sigma(\tau(x)) =\sigma(x)</math>. Luego,
{{QED}} </ul>
</math>x= \eta^t(x) = \sigma^t(x)</math>; lo que implica que <math>r|t</math>. Análogamente <math>s|t</math>,
 
Luego <math>m|t</math>. Lo que prueba que <math>m=t</math>.
{{QED}} </ul> <hr>
<b>Corolario 9.1. </b> <i> Sea <math>\sigma = \tau_1 \tau_2 \dots \tau_r</math>. Entonces el orden de <math>\sigma</math> es el mínimo común múltiplo de los ordenes de los factores.
</i>
<ul><i>
Demostración: </i> Inducción sobre <math>r</math>. {{QED}} </ul> <hr>
 
{{Ejmpl|Ejemplo}}
En <math>\textsf{S}_5</math> la permutación <math>(123)(45)</math> tiene orden 6.
<hr>
 
{{Ejmpl|Ejemplo}}
== Ejercicios del Capítulo ==
En <math>\textsf{S}_{10}</math> hay un elemento de orden 30.
 
* El orden de <math>(12345)(678)(9\, 10)</math> es 30.
<ol> <li> Probar que el producto de dos grupos abelianos es un grupo abeliano.
<hr>
 
=== Clases de Conjugación ===
<li> Sea <math>G</math> un grupo abeliano tal que <math>|G| = pq</math>
donde <math>p</math> y <math>q</math> son números primos diferentes.
Probar que hay elementos <math>x</math>, <math>y</math> tales que
<math>o(x) = p</math>, <math>o(y) = q</math> y que <math>G \cong \textsf{C}_p
\times \textsf{C}_q</math>.
 
Sea <math>\sigma</math> una permutación de <math>\textsf{S}_n</math> y sea <math>\tau_1 \tau_2 \dots \tau_k</math> la descomposición en ciclos disjuntos de <math>\sigma</math> incluyendo los 1--ciclos y tal que
<li> Clasificar los grupos de orden 10, 14 y 15.
<center><math>1 \le \ell(\tau_1) \le \ell(\tau_2) \le \dots \le \ell(\tau_k) \le n.</math></center>
(<math>\ell(\tau)</math> es el largo del ciclo <math>\tau</math>).
 
Llamamos <i>tipo de <math>\sigma</math></i> a la sucesión <math>(\ell(\tau_1), \dots, \ell(\tau_k))</math>.
Notemos que
<center><math>\ell(\tau_1)+ \dots+ \ell(\tau_k) = n.</math></center>
Luego, cada tipo de una permutación define una partición de <math>n</math>.
 
Como cada conjugado de un ciclo tiene igual largo que el ciclo, sigue que los conjugados de una permutación tienen igual tipo que la permutación.
Sean <math>\sigma = \tau_1 \dots \tau_k</math> y <math>\sigma' = \tau_1' \dots\tau_k'</math> dos permutaciones de igual tipo con las descomposiciones normalizadas como arriba.
 
Observemos que el soporte <math>S_\sigma</math> es la reunión disjunta de los soportes de los <math>\tau_i</math>, <math>1 \le i \le k</math>. Análogamente para el soporte de <math>\sigma'</math>.
Supongamos que <math>\tau_j = (x_{j_1} \, \dots\, x_{j_r})</math> donde <math>j_r = \ell(\tau_j)</math>.
Sea <math>\tau_j' = (y _{j_1} \, \dots \, y_{j_r})</math> el ciclo correspondiente de <math>\sigma'</math>.
Sea <math>\beta</math> la permutación tal que sobre el soporte de <math>\tau_j</math> es tal que
</math>\beta(x_{j_\mu}) = y_{j_\mu}</math>. Luego, por el lema de conjugación, <math>\beta \tau_j \beta^{-1} = \tau_j'</math>.
Se tiene entonces que
<center><math>\begin{array}{rcl}
\beta \sigma \beta^{-1}
&=& \beta \tau_1 \beta^{-1}\, \beta \tau_2 \beta^{-1}\, \cdots \beta \tau_k \beta^{-1}\\
&=& \tau_1'\, \tau_2' \cdots \tau_k.
\end{array}</math></center>
 
<b>Proposición 10. </b> <!-- propSIm10 --><i> Dos permutaciones son conjugadas, ssi, tienen igual tipo. Hay tantas clases de conjugación de <math>\textsf{S}_n</math> como tipos, o sea como particiones de <math>n</math>.
</i>
 
=== Ejercicios ===
 
<ol>
<li> Expandir como una permutación completa de cinco elementos, cada uno de los siguientes ciclos de <math>\textsf{S}_5</math>.
<center><math>(12),\quad (243),\quad (5421), (12354)</math></center>
 
<li> Probar que en <math>\textsf{S}_5</math>, se tiene las siguientes relaciones:
<ol type="a">
<li> <math>(243) = (24)(34)</math>.
 
<li> <math>(5421) = (54)(42)(21)</math>.
 
<li> <math>(12345) = (12)(23)(34)(45)</math>.
</ol>
¿Qué se puede conjeturar?
 
 
<li> Hallar todos los ciclos de largo 3 en <math>\textsf{S}_3</math> y en <math>\textsf{S}_4</math>.
 
 
 
<li> Probar que <math>(abc) = (ab)(bc)</math> y que <math>(ab\, c\, d) = (a\, b)(b\, c)(c\, d)</math>.
 
<li> Sea <math>\beta</math> un producto de transposiciones disjuntas. Probar que <math>\beta^2 =id</math>.
 
<li> Sea <math>\sigma = (x_1 \, x_2 \, x_3 \, \dots \, x_k )</math>. Probar que
<math>\sigma^2(x_i) = (x_{i+2})</math> donde los subíndices <math>i+2</math> mayores que <math>k</math> se computan módulo <math>k</math>. Por ejemplo,
<math>(14532) ^2 = (15243).</math>
 
Usar lo anterior, para computar rápidamente los siguientes cuadrados: <math>(123)^2</math>, <math>(14352)^2</math>, <math>(1235)^2</math>, <math>(15)^2</math>. Observar que no siempre el cuadrado de un ciclo produce un ciclo del mismo largo.
 
Inventar un método para calcular cubos de permutaciones rápidamente.
 
 
<li> Sean <math>\alpha</math> y <math>\beta</math> permutaciones disjuntas de <math>\textsf{S}_n</math>. Probar que
<ol type="a">
<li> <math>\alpha^k</math> y <math>\beta^k</math> son permutaciones disjuntas, y que
<li> <math>(\alpha \beta)^k = \alpha^k \beta^k</math>.
</ol>
 
<li> \label{exDCT} Probar que <math>(x_1\, x_2\, \ldots \, x_k) = (x_{k-1}\, x_k) \dots (x_2\, x_k) (x_1 x_k)</math>. Es decir que todo ciclo es un producto de transposiciones.
 
<li> Probar que en <math>\textsf{S}_n</math>, Si <math>\sigma</math> y <math>\tau</math> son ciclos disjuntos, entonces <math>\sigma \tau \sigma^{-1} \tau^{-1} = id</math>.
 
<li> Sean <math>\sigma_1=(12)</math>, <math>\sigma_2=(34)</math>, <math>\sigma = \sigma_1 \sigma_2</math>, <math>\tau =(123)</math> y <math>\eta = \tau \sigma \tau^{-1} \sigma^{-1}</math>.
Verificar que <math>\eta =(13)(24)</math>
 
<li> Sea <math>\tau = (12345)\beta</math> donde <math>\beta</math> es un producto de ciclos disjuntos de <math>(12345)</math>. Sea <math>\sigma = (123)</math>. Probar que
<math>\sigma \tau \sigma^{-1} = (23145)\beta</math> y que <math>\sigma \tau \sigma^{-1} \tau^{-1} = (124)</math>.
 
<li> Sea <math>\tau = (123)(456)</math> donde <math>\beta</math> es tal que <math>I_{\beta} \cap \{1,2,3,4,5,6\} = \emptyset</math>. Sea <math>\sigma = (124)</math>. Probar que
<math>\sigma \tau \sigma^{-1} = (243)(156)\beta</math> y que <math>\sigma \tau \sigma^{-1} \tau^{-1} = (12534)</math>.
 
<li> Hallar la cantidad de 2--ciclos en <math>\textsf{S}_n</math>.
 
<li> Probar que el soporte de un ciclo <math>\sigma</math> es la órbita de cualquiera de los elementos del ciclo por <math>\sigma</math>.
</ol>
 
== Ejercicios del Capítulo ==
<!-- == Comentarios == -->
 
<ol>
<li> Para cada grupo indicado, hallar el subgrupo cíclico generado por el elemento indicado
<ol type="a">
<li> <math>\Z_{30},\quad [10]. </math>
<li> <math>\Z_{50}, \quad [12]. </math>
<li> <math>\Z_{50}, \quad [11]. </math>
</ol>
 
<li> Describir al subgrupo cíclico de <math>GL_2(\R)</math> generado por las matrices siguientes.
{{Eqn|<math>
\text{(i)}\quad \begin{bmatrix}0 & -1 \\ 1 & 0 \end{bmatrix}, \quad
\text{(ii)}\quad \begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix}, \quad
\text{(iii)}\quad \begin{bmatrix}1 & 1 \\ 0 & 1 \end{bmatrix}. </math>}}
 
<li> Sea <math>G = \Z_{12}</math>. <br/>
<ol type="a">
<li>¿Por qué este grupo es cíclico?
<li> Hallar todos los posibles ordenes de elementos de G.
<li> Para cada divisor d de 12, hallar un elemento de G con orden igual a d.
<li> ¿Cuáles son todos los generadores de <math> \Z_{12}</math>?
<li> Hallar los automorfismos de <math>\Z_{12}</math>. <br />
</ol>
 
<li> Sea G un grupo finito. Sean a y b elementos de G. Probar las siguientes relaciones acerca de sus ordenes.
<ol type="a">
<li> o(a<sup>-1</sup>)= o(a).
<li> o(bab<sup>-1</sup>) = o(a).
<li> Si ab=ba entonces o(ab) = mcm(o(a), o(b)).
<li> Si mcd(o(a),o(b)) = 1 y ab =ba entonces o(ab)=o(a)o(b).
</ol>
 
<li> Hallar la cantidad de generadores de <math>\Z_m</math> para <math>m=13,\ 25,\ 36,\ 60,\ \text{ y } 72. </math>
<li> Probar que el grupo multiplicativo <math>\Z_m^*</math> para m=5 y 7 es cíclico, pero que <math>\Z^*_8</math> no es cíclico.
 
<li> Sea G =\langle a \rangle de orden n. Probar que <math>a^r = a^s</math>, ssi, <math>r \equiv s \pmod{n}</math>.
 
<li> Sea f: G --> H un homomorfismo de grupos con G = <g> y H = <h>. Probar que o(h) es un divisor de o(g).
 
<li> Probar que la imagen por un homomorfismo de un grupo cíclico es un grupo cíclico. ¿Cuál es uno de los generadores de este grupo cíclico? ¿Puede pasar que el grupo original sea infinito, pero que su imagen sea un grupo finito?
 
<li> Sea G un grupo cíclico infinito. Probar que si G es un generador del grupo, hay solamente otro generador, que es el inverso de G. ¿Será cierto que un grupo cíclico con exactamente dos generadores es infinito?
 
<li> Sea G un grupo cíclico que tiene un único generador. Probar que G tiene solamente dos elementos.
 
<li> (Producto de Grupos Cíclicos)
<ol type="a">
<li> Sea H el grupo cíclico de orden 5 generado por a y sea K el grupo cíclico de orden 3 generado por b. Probar que el producto <math>H \times K</math> es un grupo cíclico generado por (a,b). Concluir que <math>C_{15} \cong C_5 \times C_3</math>.
<li> Sea H el grupo cíclico de orden 4 generado por a y sea K el grupo cíclico de orden 2 generado por b. Probar que el producto <math>H \times K</math> no es un grupo cíclico.
<li> ¿Cuándo el producto de grupos cíclicos es cíclico?
</ol>
 
 
<li>Sea p un número primo. Probar que f(p<sup>n</sup>)=p<sup>n-1</sup>(p-1), donde f es la función de Euler. (Sugerencia. mcd(a,p<sup>n</sup>=1, ssi, mcd(a,p)=1.)
 
<li> (La función f de Euler). Probar que para cada entero positivo n se cumple que <math>n = \sum_{d|n} \varphi(d)</math>. (Sugerencia: considerar el grupo cíclico con n elementos y la cantidad de generadores de cada uno de sus subgrupos.)
 
<li> Probar que U<sub>n</sub> (raíces enésimas de la unidad) es un grupo cíclico de orden n respecto a la multiplicación de números complejos.
 
<li> Marcar cada uno de los siguientes enunciados como válido o falso.
<ol type="a">
<li> Un grupo abeliano es un grupo cíclico.
<li> Un grupo cíclico de orden 30 tiene un subgrupo de orden 12.
 
<li> Un elemento x de un grupo G tiene orden n, ssi, <math>x^n=e.</math>
 
<li> Los Racionales positivos con la multiplicación forman un grupo cíclico infinito.
 
<li> Cada elemento diferente del neutro es un posible generador de un grupo cíclico.
</ol>
 
<li> ¿Cuáles grupos cíclicos tiene la propiedad que cualquier elemento diferente del neutro es un generador del grupo?
 
<li> (Monoides) Un monoide es cíclico cuando todos sus elementos son potencias naturales de un elemento m, y <math>m^0=e</math>. ¿Cuáles resultados de grupos cíclicos se podrían extender a monoides cíclicos?
 
<li> (*) Se prueba en el texto que para cada divisor del orden de un grupo cíclico, hay exactamente un subgrupo de ese orden. ¿Caracteriza esta propiedad a los grupos cíclicos? Es decir, si sabemos que un grupo finito tiene para cada uno de los divisores de su orden exactamente un subgrupo de orden dicho divisor, ¿podremos concluir que el grupo es cíclico?
</ol>
 
== Comentarios ==
Los grupos cíclicos son los bloques para la construcción de grupos abelianos. Se tiene los siguientes resultados:
<ul>
<li> Cada grupo abeliano finito es un producto de grupos cíclicos.
<li> Sea G un grupo abeliano de orden <math>n</math>. Entonces, hay una sucesión <math>n_1, n_2, ... , n_k </math> de enteros positivos mayores de 1 tales que cada número de la sucesión es un divisor del próximo y cuyo producto es <math>n</math>, tal que <i>G</i> es el producto de los <math>C_{n_i}, \quad 1 \le i <k.</math>. Además dicha sucesión es única. <ref>Ver, por ejemplo (BB) Dean pag. 152.</ref>
</ul>
La demostración de esos resultados requiere otros resultados que no están cubiertos en este texto. Sin embargo, resulta interesante sus aplicaciones para la clasificación de grupos abelianos finitos.
 
<ul>
<li> Grupos abelianos de orden 8.
Los divisores positivos de 8 (mayores que 1) son 2, 4, 8. Por lo que tenemos las siguientes sucesiones posibles:(2,2,2), (2,4) y (8). Luego hay tres tipos posibles de grupos abelianos de orden 8.
{{Eqn|<math>C_2 \times C_2 \times C_2, \quad C_2 \times C_4, \quad C_8.</math>}}
 
<li> Grupos abelianos de orden 10.
Los divisores positivos de 10 (mayores que 1) son 2, 5 y 10. Por lo que la única sucesión posible satisfaciendo las condiciones de divisibilidad es 10. Es decir que hay solamente un grupo abeliano de orden 10, el grupo cíclico de orden 10.
 
<li> Grupos abelianos de orden 20.
Los divisores positivos de 20 (mayores que 1) son 2, 4, 5, 10 y 20. Luego, las únicas sucesiones satisfaciendo las condiciones de divisibilidad son 20 y 2, 10. Es decir que los únicos grupos abelianos de orden 20 son el grupo cíclico de orden 20 y el producto <math>C_2 \times C_{10}</math>
</ul>
 
== Lecturas Adicionales ==
Véase también
<ul>
<li> Wikipedia: [[w:Grupo Cíclico|Grupo Cíclico]]
<li> Wikipedia: [[w:Aritmética modular|Aritmética Modular]]
<li> Weisstein, Eric W. "Cyclic Group." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CyclicGroup.html
</ul>
 
== Notas ==
{{Listaref}}
<!-- == Referencias == -->
 
<!-- abc -->
<!-- 05-1929-2015 -->