La tabla cartesiana. La ultima fila y la primera columna contienen los números que se van a sumar (habitualmente, los números enteros hasta el 10), y en la intersección de cada fila y cada columna está la suma del número de su fila más el número de su columna.
Estas tablas se aprenden de memoria y permiten hacer sumas de dos números de un dígito cada uno directamente.
Para realizar una suma entre dos sumandos[2] se pone el primero en una linea, el segundo debajo, haciendo coincidir los números en la misma vertical, debajo una raya horizontal y por fin debajo el resultado de la suma, si los sumandos son de una sola cifra el resultado de la suma esta en la tabla. En el ejemplo 4 más 5 son 9.
El primer caso de suma es el de dos números de una sola cifra, como el ejemplo anterior, el resultado se obtiene de la tabla de sumar, que se supone se sabe de memoria. Si queremos sumar 6 más 2:
Sumar más de dos números de varias cifras, por ejemplo: 25.876; 46.146; 9.983; 1.201; 37.391 que se suman de este modo:
Sumando las unidades: 6 y 6 son 12 y 3 son 15 y 1 son 16 y 1 son 17, anotamos el 7 y nos llevamos 1:
En las decenas sumamos primero la llevada, para no olvidarnos: 1 de llevada más 7 son 8, más 4 son 12, más 8 son 20, más 9 son 29; anotamos el 9 y nos llevamos 2:
Sumamos las centenas: 2 de llevada más 8 son 10, más 1 son 11, más 9 son 20, más 2 son 22, y más 3 son 25; anotamos el 5 y nos llevamos 2:
Sumamos 2 de llevada más 5 son 7, más 6 son 13, más 9 son 22, más 1 son 23 y mas 7 son 30; anotamos el 0 y nos llevamos 3:
Sumamos 3 de llevada más 2 son 5, más 4 son 9 y mas 3 son 12; anotamos el 2 y nos llevamos 1:
Posemos anotar directamente la 1 de llevada porque no hay mas números que sumar:
La operación suma de números naturales, desde un punto de vista algebraico, permite el siguiente análisis: Definimos el conjunto de los numeros naturales, N, como el formado los los numeros enteros iguales o mayores que cero:
La operación suma de números naturales es una aplicación, por la cual, a cada par ordenado de números naturales (a,b) se le asocia un número natural c, que es la suma de los dos anteriores:
Al ser una aplicación matemática, se cumple que, para todo par de valores a, b de números naturales existe un numero natural c que la suma de a y de b (existencia de imagen) y ademas el número natural c que es la suma de a y de b es único (unicidad de imagen), estas dos propiedades, aunque se consideran obvias, es necesario tenerlas en cuenta, dado que indican que la suma siempre dará un resultado y un único resultad.
Según la siguiente estructura, para un conjunto y una operación binaria:
↑Alonso Salinas García (2008). «2» (en español). Método calma. Como iniciara tu hijo en el aprendizaje de las matemáticas (sin saber nada). Editorial Procompal. p. 30.
↑Sabrás Gurrea, Amós (1931). «II». En Núñez y Cª. (en español). Nociones y ejercicios de aritmética y geometria (5 edición). p. 18.