Matemáticas/Matrices/Multiplicación

Ya vimos en los temas anteriores que se pueden extender las operaciones para los números reales a los sistemas con vectores y matrices, en cuanto a la multiplicación se puede extender en el producto escalar por matriz y el producto entre matrices.

Definición

editar

  es una matriz de n x m,  , y   es una matriz de m x k,  , el producto   es la matriz de n x k,   .

Cálculo del producto de matrices

editar

Si   es una matriz de dimensiones m x r y   otra matriz de dimensiones r x n, entonces para calcular el elemento que está en el renglón i-ésimo y la columna j-ésima de   y que se denomina   se toma el renglón i-ésimo de la matriz A y la columna j-ésima de B. Se multiplican los elementos correspondientes del renglón y la columna y después se suman los productos. Esta expresión equivale a:

 

Seguidamente, se desarrolla un ejemplo con dos matrices de 2 x 2. Sean las siguientes matrices:

 

De acuerdo a lo anterior, el producto se calcula así:

 

Como podemos observar, el número de columnas de   debe corresponder al número de renglones que haya en   para que el producto de las matrices esté definido. También, la definición de   muestra que la matriz producto tiene idéntica cantidad de filas o renglones que   y de columnas que  .

Cálculo parcial del producto de matrices

editar

En ocasiones, no es necesario calcular todos los elementos de un producto de matrices, sino una fila o una columna determinada. Para ello, supondremos que existen dos matrices   y   de dimensiones m x r y r x n, respectivamente. Si se desea calcular los elementos de la fila i-ésima de la matriz producto, se deberá tomar de la matriz   únicamente la fila i-ésima y multiplicarla por la matriz  . Esto se representa así:

 
 

En el caso de los elementos de la columna j-ésima de la matriz producto, se deberá tomar de la matriz   únicamente la columna j-ésima y multiplicarla por la matriz  :

 

En ambos casos, cada elemento de la fila i-ésima y columna j-ésima de la matriz producto es calculado así:

 

Propiedades del producto entre matrices

editar
  1.   Propiedad asociativa.
  2.   Propiedad distributiva izquierda.
  3.   Propiedad distributiva derecha.
  4.   Para cualquier  .
  5.   Identidad de la multiplicación entre matrices. Las matrices   e   denotan a la Matriz identidad.

Bibliografía

editar
  1. Apuntes de clase de Álgebra Lineal. Universidad Distrital Francisco José de Caldas.
  2. ANTON, Howard. Introducción al álgebra lineal. Editorial Limusa, México, 1985. ISBN 968-18-0631-X
  3. LAY, David. Álgebra lineal y sus aplicaciones. Pearson Educación, México, 2007. ISBN 970-26-0906-2