Álgebra/Análisis numérico/Solución de Sistemas de Ecuaciones Lineales/Método de Montante

Método

editar

El método consiste en ir "pivoteando" en la diagonal principal. Se comienza en el extremo superior izquierdo, el renglón donde esta el pivote va a ser el renglón base de todo el sistema y la columna donde esta el pivote va a ser la columna base. Con respecto a ese renglón y esa columna, donde está el pivote, se forman determinantes de dos por dos, y siempre se trabaja con números enteros, si apareciera alguna fracción hay un error.

 

En donde   es el Nuevo Elemento,   es el Pivote,   es el elemento Actual,   es el Elemento Correspondiente a la Fila del pivote,   es el Elemento Correspondiente a la Columna del pivote y   es el Pivote Anterior

Ejemplo

editar

Dado el siguiente sistema de ecuaciones:

 ,
 ,
 
 


Se escribe la matriz ampliada (con los resultados):

 


  • El renglón donde está el pivote se queda idéntico, la columna donde está el pivote se hace ceros.
 
  • Con respecto al renglón donde está el pivote y la columna donde está el pivote se forman determinantes de dos por dos.
  • El número inicial por el que se va a dividir el resultado va a ser 1
  • Se resuelve multiplicando el elemento por el pivote, menos el producto de los dos elementos de la fila y la columna donde están el pivote y el elemento, aplicando el método.
 


  • Nuestro nuevo pivote es el 3, así que se colocara sobre la diagonal principal solamente hasta el renglón donde se encuentra (renglón 2)
  • El renglón donde está el pivote se queda idéntico, la columna donde está el pivote se hace ceros.
  • Se repiten los pasos 1 y 2, se resuelve aplicando el algoritmo, tomando en cuenta que el pivote anterior es "2", esto quiere decir que el resultado se dividirá entre "2".
 
  • Nuestro nuevo pivote es el 16, así que se colocara sobre la diagonal principal solamente hasta el renglón donde se encuentra (renglón 3)
  • El renglón donde está el pivote se queda idéntico, la columna donde está el pivote se hace ceros.
  • Se repiten los pasos 1 y 2, se resuelve aplicando el algoritmo, tomando en cuenta que el pivote anterior es "3"
 
  • Nuestro nuevo pivote es el 50, así que se colocará sobre la diagonal principal* solamente hasta el renglón donde se encuentra (renglón 4)
  • El renglón donde está el pivote se queda idéntico, la columna donde está el pivote se hace ceros.
  • Se repiten los pasos 1 y 2, se resuelve aplicando el algoritmo, tomando en cuenta que el pivote anterior es "16", esto quiere decir que el resultado se dividirá entre "16".


 

La solución al sistema (1) es:

 
  1. Nótese que aunque el resultado puede dar en fracciones, todo el tiempo se trabaja con enteros.

Es importante hacer la aclaración que el PIVOTE no puede ser cero, si llegara a suceder que el pivote es cero, se deben intercambiar filas de manera que el pivote sea un valor diferente de cero.